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A surprising result
Any n points in Euclidean space can be embedded 
in Ω(log n / ε2) dimensions without distorting the 

distances between any pair of points by more 
than a factor (1±ε), for any 0 < ε < 1.

...

Example: 1 billion points on a billion dimensional simplex 
can be mapped to a million dimensional subspace with 

no more than 1% distortion on the lengths!
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Outline

• Quick history of random projections

• Main result for today: Johnson-Lindenstrauss

• An elementary proof

• Survey of some applications
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Johnson-Lindenstrauss

• Fix an arbitrary 0 < ε < 1

• Consider a set  V of n points in Rd

• We want to project them into a k 
dimensional subspace

• Assume k is large enough: k ≥ 4 log(n)
ε2

2 −
ε3

3
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Johnson-Lindenstrauss

• Consequence: there is a map f : Rd → Rk  

such that for all pair of points u, v ∈ V:

• Moreover:

• f can be found in randomized poly-time

• the one given by the proof is actually an 
orthogonal projection

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2



Main steps of the proof

1. Show that the length of a randomly 
projected vector is sharply concentrated 
about its mean

2. Apply this to one fixed pair of element in V

3. Extend to the n points in V and repeat to 
amplify the probability

[4]



First step

• Let u ∈ Rd ,  ||u|| = 1   (fixed)

• W ≅ Rk                      (random)

• We want a concentration bound on:

||πW (u)||2
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First step (con’t)

• Note: if X1 , ..., Xd  are iid N(0, 1), then

• Let

• Note: 

Y =
(X1, . . . , Xd)

||X|| ∼ Uni(Sd−1)

L = ||πRk(Y )||2

E[L] =
k

d



First step (con’t)

• Concentration of normal r.v. is very well 
studied

• Using independence and properties of the 
moment generating function of normal 
distributions, we obtain:

(∀β < 1) P [L ≤ βµ] ≤ exp
(k

2
(1− β + log β)

)
.

(∀β > 1) P [L ≥ βµ] ≤ exp
(k

2
(1− β + log β)

)
,



Second step

• Let f be a projection to a random k-
subspace

• Fix one pair u, v ∈ V and let 

• Applying the first step to L, we obtain

L = ||f(u)− f(v)||2, µ = (k/d)||u− v||2

P [L ≤ (1− ε)µ] ≤ 1
n2

P [L ≥ (1 + ε)µ] ≤ 1
n2



Final step

• Choose the map 

• By the last step, for any fixed pair of points 
u and v,

• By the union bound:  the probability that 
the event in the LHS occurs is

f ′ =
(n

k

)1/2
f

P
{ ||f ′(v)− f ′(u)||2

||u− v||2 /∈ [1− ε, 1 + ε]
}
≤ 2

n2

≤
(

n

2

)
2
n2

=
(
1− 1

n

)
.



Some applications
• Fast dimensionality reduction

• Given a m by n matrix (for instance, m documents 
and n word types), the goal is to quickly compute 
a rank k approximation

• Classically: take the top k terms in a SVD.  This 
takes time O(m n2)

• Alternative: apply the random projection first to 
decrease the dimensionality to l ≥ k, then, apply 
SVD.  Slight loss of accuracy but takes time 
O(m n log n).
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More applications

• Asymmetric image compression

• space probes, bio probes, ...

• Approximation algorithms for NP-hard 
optimization problems

• VLSI design

• many more...

[6]
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• The slides are available online: 
http://www.cs.berkeley.edu/~bouchard/pub/
random_projection_presentation.pdf
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• The illustration on the first slide is from 
A.T. Fomenko, “Geometry and 
probability” (1987).


