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Prediction-powered inference is a framework for performing valid statistical inference when an
experimental dataset is supplemented with predictions from a machine-learning system. The framework
yields simple algorithms for computing provably valid confidence intervals for quantities such as means,
quantiles, and linear and logistic regression coefficients without making any assumptions about the
machine-learning algorithm that supplies the predictions. Furthermore, more accurate predictions
translate to smaller confidence intervals. Prediction-powered inference could enable researchers to draw
valid and more data-efficient conclusions using machine learning. The benefits of prediction-powered
inference were demonstrated with datasets from proteomics, astronomy, genomics, remote sensing,
census analysis, and ecology.

I
magine a scientist has a machine-learning
system that can supply accurate predic-
tions about a phenomenon farmore cheaply
than any gold-standard experimental tech-
nique. The scientist may wish to use these

predictions as evidence in drawing scientific
conclusions. For example, accurate predictions
of three-dimensional structures have beenmade
for a vast catalog of known protein sequences
(1, 2) and are now being used in proteomics
studies (3, 4). Such machine-learning systems
are increasingly common in modern scientific
inquiry, in domains ranging from cancer prog-
nosis to microclimate modeling. Predictions
are not perfect, however, and this may lead to
incorrect conclusions. Moreover, as predic-
tions beget other predictions, the cumulative
effect can amplify the imperfections. How can
modern science leverage machine-learning
predictions in a statistically principled way?
One way to use predictions is to follow the

imputationapproach: Proceed as if they are gold-
standard measurements. Although this lets the
scientist draw conclusions cheaply and quickly
owing to the high-throughput nature of the
machine-learning system, the conclusionsmaybe
invalid because the predictionsmay have biases.
Another possibility is to apply the classical

approach: Ignore the machine-learning predic-
tions and only use the available gold-standard
measurements, which are typically far less abun-
dant than predictions. The resulting discov-
eries will be statistically valid, but the smaller
amount of data will limit the scope of possible
discoveries.
This manuscript presents prediction-powered

inference, a framework that achieves the best
of both worlds: extracting information from
the predictions of a high-throughputmachine-
learning system and guaranteeing statistical

validity of the resulting conclusions. Prediction-
powered inference provides a protocol for com-
bining predictions, which are abundant but
not always trustworthy, with gold-standard
data, which are trusted but scarce, to compute
confidence intervals and P values. The result-
ing confidence intervals and P values are sta-
tistically valid, as in the classical approach, but
also leverage the information contained in the
predictions, as in the imputation approach, to
make the confidence intervals smaller and the
P values more powerful.
Prediction-powered inference applies to any

machine-learning system; as such, it absolves
the need for case-by-case analyses dependent
on the machine-learning algorithm on hand.
The proposed protocol thereby could enable
researchers to report on and assess the evi-
dence for their conclusions in a fully stand-
ardized way.

Protocol for prediction-powered inference

The protocol for prediction-powered inference
proceeds as follows. The scientist wishes to
construct a confidence interval for a quantity
q�, such as the mean outcome or a regression
coefficient quantifying the statistical associ-
ation between the outcome and a feature.
Toward this goal, they have access to a small
gold-standard dataset of features paired with
outcomes, X ;Yð Þ ¼ X1;Y1ð Þ;…; Xn;Ynð Þð Þ, as
well as the features of a large unlabeled data-
set, X ′;Y ′ð Þ ¼ X1′;Y1′

� �
;…; XN′ ;YN′

� �� �
, where

the true outcomesY
0
1 ;…;Y

0
N are not observed.

Typically, N is much larger than n . Both data-
sets are sampled at random from a larger pop-
ulation. Further, for both datasets the scientist
has predictions of the outcomes made by a
machine-learning algorithm based on the fea-
tures, denoted Ŷ1 ;…; Ŷn

� �
and Ŷ1′;…; ŶN′

� �
,

respectively. The following exposition focuses
on confidence intervals; however, by the stan-
dard duality between confidence intervals and
P values, the presented tools immediately
carry over to valid P-value constructions and
hypothesis tests; see supplementary materials
(SM) for details.

Prediction-powered inference uses the gold-
standard dataset to quantify and correct for
the errors made by the machine-learning al-
gorithm on the unlabeled dataset, thereby
enabling researchers to reliably incorporate
predictions when constructing confidence
intervals. The three-step protocol is outlined
below and visualized in Fig. 1.
1) Estimand. The first step is to select an

estimand q�. The estimand is the quantity the
scientist is interested in knowing—for exam-
ple, the mean outcome E Yi½ �, median outcome
median Yið Þ, a linear regression coefficient ob-
tained by regressing Y onto X , etc.
2) Measure of fit and rectifier. The key step

is to identify the right measure of fit mq and
rectifierDq for the selected estimand. For every
candidate value of the estimandq, themeasure
of fitmq is computed on the unlabeled dataset
imputed with predictions, ðX ′; Ŷ ′Þ and quanti-
fies how likelyq� is to be equal toqon the basis
of the imputed data. The closer mq is to zero,
the more plausible it is for q� to be equal to q.
The rectifier Dq is a notion of prediction er-

ror that is relevant for the estimand of interest.
It is defined as the difference of themeasure of
fit mq computed on the labeled data, X ;Yð Þ,
and the labeled data when the true outcomes
are replaced with predicted ones, X ; Ŷ

� �
. If

the predictions are perfect, the rectifier is equal
to zero.
Table 1 states the appropriate measure of fit

and rectifier for common estimands of in-
terest: the mean outcome, median outcome,
q-quantile of the outcome, and linear and
logistic regression coefficients when regress-
ing Y onto X . A general recipe for deriving
the right measure of fit and corresponding
rectifier for a broad class of other estimands
is provided in the SM.
3) Prediction-powered confidence inter-

val. Finally, the measure of fit and rectifier
are carefully combined to form a prediction-
powered confidence interval for q�. This pro-
cess is called rectifying the confidence interval.
The prediction-powered confidence interval is
constructed asCPP ¼ q such that mq þ Dqj j≤f
wq að Þg and is guaranteed to contain the esti-
mand with probability at least 1� a . Here,
wq að Þ is a constant that depends on the con-
fidence level; it is explicitly stated in Theorem
S1 in the SM.

Properties of prediction-powered inference

We proved mathematically that prediction-
powered inference yields a confidence interval
that contains the true value of the estimand
at the desired confidence level, such as 95%.
Notably, this validity is guaranteed for any
machine-learning algorithm and any underlying
data distribution. Similarly, the correspond-
ing P values are also valid for any machine-
learning algorithm and data distribution. See
SM for the details of the mathematical proof
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of validity. A researcher relying on a deep neu-
ral network for predictions can therefore draw
reliable conclusions, even though its predic-
tions will inevitably be imperfect. Further-
more, prediction-powered inference enables
more informative inferences than the classi-
cal approach, in which the researcher does not
use machine-learning predictions: The confi-
dence intervals are narrower, and the P values
are more powerful. This is intuitive; prediction-
powered inference carefully extracts infor-
mation from the imputed data and thus has
access to a larger sample size.

General applicability

Beyond quantities such asmeans, quantiles, and
regression coefficients, the principle of prediction-
powered inference can be used for construct-
ing valid confidence intervals for any estimand
that can be expressed as theminimizer of a con-
vex objective function. Thismaster protocol,which
generalizes all the special cases instantiated in
Table 1, is the core technical contribution of this
work. We explained prediction-powered infer-
ence in greater generality and proved its validity
in this general case in the SM. Because many
important quantities can be expressed in terms
of a convex-optimization problem, prediction-
powered inference thus addresses many data-

analysis goals beyond those explicitly demon-
strated in this article.

Inference under distribution shift

Prediction-powered inference is also appli-
cable to settings with distribution shift, i.e., the
more challenging case where the unlabeled
data are collected under different conditions
than the gold-standard data. Two types of dis-
tribution shift are considered: label shift and
covariate shift. The protocol retains the same
properties as before: It is statistically valid for
any machine-learning algorithm and boosts
statistical power by making use of machine-
learning predictions.
For covariate shift—the setting where only

the feature distribution changes between the
labeled and the unlabeled data—prediction-
powered inference handles all estimation prob-
lems handled by the master protocol. This is
done by appropriately reweighting the data;
see Corollary S13 in the SM for details.
For label shift—the setting where only the

label proportions change between the labeled
and the unlabeled data—prediction-powered
inference can be applied to estimands of the
form q� ¼ E n Yi′

� �� �
, for a fixed function n. For

example, choosing n yð Þ ¼ 1 y ¼ kf g asks for
inference on the proportion of instances that

belong to class k. See Theorem S3 in the SM
for a full description of the method.

Application of prediction-powered inference
to real datasets

Wedemonstrated prediction-powered inference
on several real tasks. In each, we computed a
prediction-powered confidence interval for an
estimand and compared it to intervals obtained
through the classical approach and the impu-
tation approach. In all cases, the imputation ap-
proach, which usesmachine-learning predictions
without accounting for prediction errors, did
not contain the true value of the estimand. The
widths of the two valid approaches, prediction-
powered and classical, were compared as a func-
tion of the amount of labeled data used. In
addition, we compared the number of labeled
examples needed to reject a null hypothesis at
level 1� a ¼ 95% with high probability. See (5)
for a Python package implementing prediction-
powered inference, which contains code for
reproducing the experiments, and (6) for the
data used in the experiments.

Relating protein structure and
posttranslational modifications

The goal was to characterize whether vari-
ous types of posttranslational modifications

Fig. 1. Protocol for prediction-powered inference. The protocol is illustrated
graphically as a block diagram. The inputs are the gold-standard dataset, the
unlabeled dataset, and the machine-learning (ML) algorithm. The top block
contains an analysis on gold-standard data, in which the rectifier, a measure of
the prediction errors, is estimated using the labeled dataset. The bottom block

contains an analysis on unlabeled data, wherein the quantity of interest is
estimated using predictions. These analyses combine to form the prediction-
powered confidence interval. For concrete examples of the rectifier and measure
of fit, see Table 1. For a detailed theoretical exposition and more general
definitions of these quantities, see SM.
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(PTMs) occurred more frequently in intrin-
sically disordered regions (IDRs) of proteins
(7). Recently, Bludau et al. (3) studied this
relationship on an unprecedented proteome-
wide scale by using structures predicted by
AlphaFold (1) to predict IDRs, in contrast to
previous work, which was limited to far fewer
experimentally derived structures.
To quantify the association between PTMs

and IDRs, the authors applied the imputation
approach: They computed the odds ratio be-
tween AlphaFold-based IDR predictions and
PTMs on a dataset of hundreds of thousands
of protein sequence residues (8). Using pre-
diction-powered inference, we could combine
AlphaFold-based predictions together with
gold-standard IDR labels to give a confidence
interval for the true odds ratio that is statis-
tically valid, in contrast with the interval con-
structed with the imputation approach, and
smaller than the interval constructed using
the classical approach. We used the fact that
the odds ratio could be written in terms of two
means and applied the recipe from the first
row of Table 1; see SM for details.
We had 10,803 data points fromBludau et al.

(3). For each of 100 trials, we randomly sam-
pled n points to serve as the labeled dataset
and treated the remaining N ¼ 10; 803� n
points as the unlabeled dataset for which we
did not observe the IDR labels. For all values
of n and all three different types of PTMs that
we examined, the prediction-powered confi-
dence intervals were smaller than classical
intervals; see row A in Fig. 2. Often, the clas-
sical intervals were large enough that they
contained the odds ratio value of one, which
means the direction of the association could
not be determined from the confidence inter-
val. However, the imputed confidence interval

was far too small and significantly overesti-
mated the true odds ratio. To reject the null
hypothesis that the odds ratio is no greater
than one, prediction-powered inference re-
quiredn ¼ 316 labeled observations, and the
classical approach required n ¼ 799 labeled
observations; see row A in Table 2.

Galaxy classification

The goal was to determine the demographics
of galaxies with spiral arms, which are cor-
related with star formation in the disks of
low-redshift galaxies, and therefore, contrib-
ute to the understanding of star formation in
the Local Universe. A large citizen science ini-
tiative called Galaxy Zoo 2 (9) has collected
human annotations of roughly 300,000 im-
ages of galaxies from the Sloan Digital Sky
Survey (10) with the goal of measuring these
demographics. We sought to explore the use
of machine learning to improve the effective
sample size and decrease the requisite num-
ber of human-annotated galaxies.
We focused on estimating the fraction of

galaxies with spiral arms. We had 1,364,122
labeled galaxy images from Galaxy Zoo 2, from
which we simulated labeled and unlabeled
datasets as follows. For each of 100 trials, we
randomly sampled n points to serve as the la-
beled dataset and used the remaining N ¼
1; 364; 122� n points as the unlabeled data-
set. We then used the first row of Table 1 to
construct prediction-powered intervals. The
prediction-powered confidence intervals for
the mean were consistently much smaller than
the classical intervals and they retained validity,
and the imputation strategy failed to cover the
ground truth; see Fig. 2, row B. To reject the
null hypothesis that the fraction of galaxies
with spiral arms is at most 0.2, prediction-

powered inference required n ¼ 189 labeled
examples, and classical inference required
n ¼ 449 examples; see Table 2, row B.

Distribution of gene expression levels

Next, we constructed prediction-powered con-
fidence intervals on quantiles that character-
ize how a population of promoter sequences
affects gene expression. Recently, Vaishnav et al.
(11) trained a state-of-the-art transformer model
to predict the expression level of a particular
gene induced by a promoter sequence. They
used the model’s predictions to study the ef-
fects of promoters—for example, by assess-
ing how quantiles of predicted expression
levels differ between different populations
of promoters.
Here we focused on estimating different

quantiles of gene expression levels induced
by native yeast promoters. We had 61,150 la-
beled native yeast promoter sequences from
Vaishnav et al. (11), fromwhich we simulated
labeled and unlabeled datasets as follows.
For each of 100 trials, we randomly sampled
n points to serve as the labeled dataset and
used the remainingN ¼ 61; 150� n points as
the unlabeled dataset. We then used the sec-
ond and third row of Table 1 to construct
prediction-powered intervals for the median,
as well as the 25% and 75% quantiles, of the
expression levels. The prediction-powered con-
fidence intervals for all three quantiles were
much smaller than the classical intervals for
all values ofn. See row C in Fig. 2 for the results
for the median and fig. S6 for the other two
quantiles. We also evaluated the number of la-
beled examples required by prediction-powered
inference and classical inference, respectively,
to reject the null hypothesis that the median
gene expression level is atmost five. Prediction-
powered inference requiredn ¼ 764 examples
and classical inference required n ¼ 900 ex-
amples; see row C in Table 2.

Estimating deforestation in the Amazon

The goal was to estimate the fraction of the
Amazon rainforest lost between 2000 and
2015. Gold-standard deforestation labels for
parcels of land are scarce, having been col-
lected in large part through field visits, an
expensive process not suited for large areas
(12). However, machine-learning predictions
of forest cover based on satellite imagery are
readily available for the entire Amazon (13).
We began with 1596 gold-standard deforesta-
tion labels for parcels of land in the Amazon.
For each of 100 trials, we randomly sampled
n data points to serve as the labeled dataset
and used the remaining data points as the
unlabeled dataset. We used the first row of
Table 1 to construct the prediction-powered
intervals. The imputation approach yielded a
small confidence interval that failed to cover
the true deforestation fraction. The classical

Table 1. Prediction-powered inference for common statistical problems. Given a measure
of fit mq and rectifier Dq, prediction-powered inference computes a confidence interval as
CPP ¼ q such that mq þ Dqj j ≤ wq að Þf g, where wq að Þ is a constant that depends on the error level a
(see Theorem S1 in the SM). Algorithms S1 to S6 are stated in the SM. The last row (“convex
minimizer”) refers to a method that generalizes the methods in previous rows.

Estimand Measure of fit mq Rectifier Dq Procedure

Mean outcome q� 1
N

XN

i¼1
Ŷi′

1
n

Xn

i¼1
Ŷi � Yi

� �
Alg. S1

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Median outcome
1
2N

XN

i¼1
sign q‐Ŷi′

� �
1
n

Xn

i¼1
1 Yi ≤ qf g � 1 Ŷi ≤ q

n o� �
Alg. S2

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

q-quantile of outcome
�qþ 1

N

XN

i¼1
1 Ŷ 0

i ≤ q
n o

1
n

Xn

i¼1
1 Yi ≤ qf g � 1 Ŷi ≤ q

n o� �
Alg. S3

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Linear regression q� ðX′ÞþŶ ′ XþðŶ � YÞ Alg. S4
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Logistic regression
1
N

XN

i¼1
Xi′

1

1þe
�q> X

i
′
� Ŷi′

� 	
1
n

Xn

i¼1
Xi Ŷi � Yi
� �

Alg. S5
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

Convex
minimizer

1
N

XN

i¼1
rLq Xi′; Ŷi′

� �
1
n

Xn

i¼1
rLq Xi; Ŷi

� �
�rLq Xi; Yið Þ

� �
Alg. S6

.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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approach did cover the truth at the expense of
a wider interval and, accordingly, diminished
inferential power. The prediction-powered in-
tervals were smaller than the classical intervals
and retained validity; see row D in Fig. 2. We also
compared the number of gold-standard defores-
tation labels required by prediction-powered
inference and the classical approach to reject the
null hypothesis that there is no deforestation.
We obtainn ¼ 21 labels for prediction-powered
inference and n ¼ 35 labels for the classical
approach; see row D in Table 2.

Relationship between income and private
health insurance

The goal was to investigate the quantitative
effect of income on the procurement of private
health insurance using US census data. Con-
cretely, we used the Folktables interface (14) to
download census data from California in the
year 2019 (378,817 individuals). As the labeled
dataset with the health insurance indicator, n
census entries were randomly sampled. The
remaining data were used as the unlabeled
dataset. We used a gradient-boosted tree (15)
trained on the previous year’s data to predict
the health insurance indicator in 2019. We
constructed a prediction-powered confidence
interval on the logistic regression coefficient
using the fifth row of Table 1. Results in row E
in Fig. 2 show that prediction-powered in-
ference covered the ground truth, the classi-
cal interval was wider, and the imputation
strategy failed to cover the ground truth. We
also compared the number of gold-standard
labels required by prediction-powered infer-
ence and the classical approach to reject the
null hypothesis that the logistic regression
coefficient is no greater than 1:5� 10�5 . We
observed a significant sample size reduction
with prediction-powered inference, which re-
quired n ¼ 5569 labels, whereas classical
inference required n ¼ 6653 labels.

Relationship between age and income in a
covariate-shifted population

The goal was to investigate the relationship
between age and income using US census data.
The same dataset was used as in the previous
experiment, but the features were age and sex,
and the target was yearly income in dollars.
Furthermore, a shift in the distribution of the
covariates was introduced between the gold-
standard and unlabeled datasets by randomly
sampling the unlabeled dataset with sampling
weights of 0.8 for females and 0.2 for males.
We used a gradient-boosted tree (15) trained
on the previous year’s raw data to predict the
income in 2019. We constructed a prediction-
powered confidence interval on the ordinary
least squares (OLS) regression coefficient using
a covariate-shift robust version of prediction-
powered inference, stated in Corollary S13 in
the SM. Results in row F in Fig. 2 show that

A

B

C

D

E

F

G

Fig. 2. Comparison of prediction-powered inference to the classical and imputation approaches
on real tasks. Each row (A to G) is a different application domain. Panel 1 plots confidence intervals
computed using the three approaches; for prediction-powered inference and the classical approach,
intervals for five randomly chosen splits into labeled and unlabeled data are plotted. The value denoted
as “ground truth” is the estimate computed on all nþ N data points (the true labels were available
for all data points for the purpose of conducting the experiments). Panel 2 plots the average confidence
interval width, as well as the width in five randomly chosen trials, for varying n, for prediction-powered
inference and the classical approach; both are statistically valid solutions. The last problem setting
(G) does not have a classical counterpart because the data are collected under distribution shift, hence
the classical approach is not valid.
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prediction-powered inference covered the
ground truth, the classical interval was wider,
and the imputation strategy failed to cover the
ground truth. We also compared the number
of gold-standard labels required by prediction-
powered inference and the classical approach
to reject the null hypothesis that the OLS re-
gression coefficient is no greater than800 .We
observed a significant sample size reduction
with prediction-powered inference, which re-
quiredn ¼ 177labels, whereas classical inference
required n ¼ 282 labels.

Counting plankton

Assessment of the increases in phytoplank-
ton growth during springtime warming is
important for the study of global biogeo-
chemical cycling in response to climate change.
We counted the number of plankton observed
by the Imaging FlowCytobot (16, 17), an auto-
mated, submersible flow cytometry system,
at Woods Hole Oceanographic Institution
in the year 2014. We had access to data from
2013, which were labeled, and we imputed
the 2014 data with machine-learning pre-
dictions from a state-of-the-art ResNet fine-
tuned on all data up to and including 2012.
The features, Xi, are images of organic matter
taken by the FlowCytobot and the labels, Yi ,
are one of {detritus, plankton}, where detritus
represents unspecified organic matter.
The labeled dataset consisted of 421,238

image–label pairs from 2013, and we received
329,832 labeled images from 2014. We used
the data from 2014 as our unlabeled data and
confirmed our results against those that were
hand-labeled. The years 2013 and 2014 had
a distribution shift, primarily caused by the
change in the base frequency of plankton ob-
servations with respect to detritus. To apply
prediction-powered inference to count the
number of plankton recorded in 2014, we
used the label-shift-robust technique de-
scribed in Theorem S3 in the SM. The results
in row G in Fig. 2 show that prediction-
powered inference covered the ground truth
and the imputation strategy failed to cover the
ground truth.

Related work
Thematically, prediction-powered inference is
most similar to the work of Wang et al. (18),
who introduced a method to correct machine-
learning predictions for the purpose of subse-
quent inference. However, this procedure is
not guaranteed to provide coverage in general
and requires strong assumptions about the
relationship between the prediction model
and the true response, whereas prediction-
powered inference provides provably valid con-
clusions under minimal assumptions about the
data-generating distribution.
There has been an increasing body of work

on estimationwithmany unlabeled data points
and few labeleddata points (19–27), focusing on
efficiency in semiparametric or high-dimensional
regimes. Prediction-powered inference con-
tinues in this vein but focuses on the setting
where the scientist has access to a good pre-
dictive model fit on separate data. This allows
tackling a much wider range of estimands
(e.g., minimizers of any convex objective) and
gives valid inferences without assumptions
about the machine-learning model. Second,
prediction-powered inference goes beyond ran-
dom sampling and applies to certain forms of
distribution shift.
Prediction-powered inference is conceptual-

ly related to conformal prediction (28). Both
methodologies leverage a predictive model
and a labeled dataset. From this point on,
however, the twomethods diverge: Prediction-
powered inference has additional unlabeled
data and gives a confidence set that contains a
population-level quantity such as the mean
outcomewith high probability; conformal pre-
diction gives a confidence set for a test instance
that contains the true label with high prob-
ability. Thus, the goals of prediction-powered
inference and conformal prediction differ
greatly from the statistical perspective. Fur-
thermore, the mathematical tools used in the
frameworks are entirely different, and neither
method can be applied nontrivially to solve
the objective of the other.
See SMfor a furtherdiscussionof relatedwork

and the relationship of prediction-powered

inference to existing baselines, as well as for
empirical comparisons.

Conclusions

The past decade has witnessed rapid develop-
ment and deployment of large-scale machine-
learning systems across science. This surge is
proceeding, however, with little statistical jus-
tification to allow these black-box systems to
be used to draw scientific conclusions respon-
sibly. Prediction-powered inference is a stan-
dardized protocol for constructing provably
valid confidence intervals and P values, al-
lowing the scientist to use the power and scale
of machine-learning systems. On an array of
scientific problems, we demonstrated that
prediction-powered inference achieved high
statistical power owing to the use of machine-
learning predictions and retained statistical
validity.
One question that remains open is how to

handle more general forms of distribution
shift. In practice, distribution shifts are often a
result of a joint influence of several different
forms of shift, including covariate shift and
label shift and possibly others. Understanding
how to handle such settings remains an im-
portant avenue for future work.
A limitation of prediction-powered inference

is that it does not improve upon the classical
approach when the predictions are not accurate
enough or when the unlabeled dataset is not
large enough compared to the gold-standard
dataset. These points are demonstrated, both
theoretically and empirically, in SM section
“CasesWhere Prediction-Powered Inference Is
Underpowered.”Nevertheless, given the grow-
ing number of settings with excellent predic-
tive models and abundant unlabeled data, there
is increasing potential for prediction-powered
inference to benefit scientific research.
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Comparison to Baseline Procedures
The prediction-powered inference procedure was compared to three baseline procedures that also combine labeled and
unlabeled data in performing statistical inference. The baselines were:

1. Post-prediction inference. The post-prediction inference procedure of Wang et al. (18) was used for estimating
ordinary least-squares (OLS) coefficients. The procedure first fits a regression r to predict Y from Ŷ on the gold-
standard dataset. Subsequently, the regression function is used to correct the imputed labels on the unlabeled
dataset. Confidence intervals are formed using the r(Ŷ ′) as if they were gold-standard data. This procedure has
no theoretical guarantees in general and requires strong distributional assumptions on the relationship between
Y and Ŷ to provide coverage. Our experiments indicated that this approach fails to cover in realistic conditions.

2. Semi-supervised mean estimation. The semi-supervised mean estimation procedure of Zhang and Bradic (24)
involves cross-fitting a (possibly-regularized) linear model on K distinct folds of the gold-standard dataset.
The average of the K model predictions on each unlabeled data point is taken as its corresponding Ŷ ′, and
the average bias Ŷ − Y of the K models is also computed and used to debias the resulting mean estimate. The
formal validity of this approach applies to mean estimation and requires the cross-fitting of linear models; it does
not have formal guarantees for more flexible model classes. For this reason, it provided little improvement over
the classical confidence interval in our experiments, since the variance reduction possible with linear models is
typically limited.

3. Conformal prediction for mean estimation. A version of conformal prediction (28) was used to construct
prediction intervals, which are then ensembled into a mean estimate. The procedure involves using the gold-
standard data to construct conformal prediction sets with the residual score function at level α/N for each
unlabeled example. The lower- and upper- endpoints of these sets were averaged to produce a confidence
interval for the mean. This confidence interval is guaranteed validity for arbitrary models and distributions,
unlike the other baseline approaches. However, it is extremely conservative: it output infinite intervals in the
experiments. An ablation is performed without a Bonferroni correction (i.e., sets were constructed at level α
instead of α/N ), but this remained conservative and did not provide an improvement over the classical intervals.

Experimental Protocol
The methods were evaluated on an income prediction task on the same census dataset used for the logistic regression
experiments in the main text. In the case of the semi-supervised and conformal baselines, the goal was to estimate the
mean income in California in the year 2019 among employed individuals using a small amount of labeled data and a
large amount of covariates. In the case of the post-prediction inference baseline, the target of inference was the OLS
coefficient between age and income. The setup was the same as the logistic regression experiment described in the
main text (including the use of the Folktables (14) interface and the gradient-boosted tree as the predictor).

Comparison to Post-Prediction Inference
Results of the post-prediction inference protocol as compared to the classical and prediction-powered approaches are
shown in Fig. S1 for the previously-described OLS coefficient between age and income. The procedure did not cover
at the proper rate and the intervals were biased.

Comparison to Semi-Supervised Mean Estimation
Results of the semi-supervised mean estimation protocol as compared to the classical and prediction-powered ap-
proaches are shown in Fig. S2 for the previously described mean income estimation task. The prediction-powered
intervals dominated both the semi-supervised intervals and the classical ones in the experiment for all values of n.

Comparison to Conformal Prediction for Mean Estimation
Results of the conformal mean estimation protocol, with and without a Bonferroni correction, were compared to the
prediction-powered approach for the previously described mean income estimation task. The prediction-powered
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Figure S1: Comparison to the post-prediction inference procedure. On the left are five independent random draws
of intervals with n = 1000. On the right is a line plot of interval width as a function of n, averaged over 100
independent trials. Five draws of interval widths are shown as a scatter plot at their respective n. The post-prediction
inference approach is shown in red, the classical approach is in gray, and the prediction-powered approach is in green.
The post-prediction inference approach had diminishing coverage in the experiment.
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Figure S2: Comparison to the semi-supervised mean estimation procedure. The plot is the same as in Fig. S1, but
with semi-supervised inference shown in red. The semi-supervised intervals had a similar width to the classical ones
in this experiment, while the prediction-powered intervals dominated.

intervals dominated the conformal intervals for all values of n. The conformal intervals with Bonferroni correction
were infinite in size and thus could not be plotted. Without the Bonferroni correction, though the method is statistically
invalid, it remained quite conservative in the experiment, as can be seen by examining Fig. S3.

Cases Where Prediction-Powered Inference is Underpowered
Since standard confidence intervals scale with the standard error of the estimator, prediction-powered inference is
powerful when a machine-learning model can provide a reduction in the estimator variance. At a high level, this hap-
pens when N is large enough relative to n and the model is accurate enough. This was the case in all the experiments
shown in the main text. This section precisely quantifies what it means to have an accurate enough model and large
enough N . Corroborating the theory, two cases where classical inference outperforms prediction-powered inference
are presented: one where the model is not good enough and another where N is too small.
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Figure S3: Comparison to conformal prediction for mean estimation. The plot is the same as in Fig. S1, but with
conformal prediction (without a Bonferroni correction) shown in red. The intervals produced by conformal prediction
with a Bonferroni correction were infinite and thus could not be plotted. Even the conformal intervals without a
Bonferroni correction were wide compared to the prediction-powered intervals.

Mathematical Derivation
Consider the case of mean estimation, θ∗ = E[Yi]. The classical estimate of θ∗ is the sample average of the outcomes
on the labeled dataset,

θ̂class =
1

n

n∑
i=1

Yi.

Prediction-powered inference, on the other hand, computes the estimate

θ̂PP =
1

N

N∑
i=1

Ŷ ′
i −

1

n

n∑
i=1

(Ŷi − Yi).

Notice that both θ̂class and θ̂PP are unbiased, seeing that E[Ŷ ′
i ] = E[Ŷi].

The widths of the classical confidence interval based on the central limit theorem and the prediction-powered
confidence interval based on Theorem S1 scale with Var(θ̂class) and Var(θ̂PP), respectively. The classical estimator
has variance equal to

Var(θ̂class) =
1

n
Var(Yi).

The variance of the prediction-powered estimator equals

Var(θ̂PP) =
1

N
Var(Ŷ ′

i ) +
1

n
Var(Ŷi − Yi),

where independence of the two terms in the estimator is applied. Therefore, the prediction-powered confidence interval
will be tighter when

1

N
Var(Ŷ ′

i ) +
1

n
Var(Ŷi − Yi) <

1

n
Var(Yi).

Since the predictions Ŷ ′
i will typically have a variance that is of the same order as the variance of Yi, if N ≈ n one

should not expect prediction-powered inference to help. Gains are expected when N ≫ n. In that case, 1
NVar(Ŷ ′

i )≪
1
nVar(Ŷi − Yi), and thus prediction-powered inference helps when

Var(Ŷi − Yi) < Var(Yi).

In other words, prediction-powered inference gives tighter confidence intervals when the predictions explain away
some of the outcome variance.
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To gain further intuition, suppose that the outcomes are binary, Yi ∼ Bern(p), where Bern(p) denotes the
Bernoulli distribution with parameter p. In this case, θ∗ = p. For simplicity, suppose that P (Ŷi = 0|Yi = 1) = P (Ŷi =
1|Yi = 0) = η. Then, a direct variance calculation gives Var(Ŷi − Yi) = η − η2(1 − 2p)2 and Var(Yi) = p(1 − p).
This allows for a direct comparison of the variances in terms of the outcome bias p and model error η. For example,
when p = 0.5, the model error η has to be smaller than 25% for prediction-powered inference to help; when p = 0.1,
meaning the outcomes themselves have low variance, the model error η has to be smaller than about 9.5%. In general,
the lower the variance of the outcome, the lower the model error has to be for prediction-powered inference to be
helpful.

Putting everything together, the main takeaway is as follows: prediction-powered inference should only be applied
when N is (preferably substantially) larger than n, and when the model has a high enough predictive accuracy to
explain away some of the outcome variance. While this derivation focused on mean estimation, a similar intuition
holds for other estimation problems.

Inaccurate Machine-Learning Model
The deforestation analysis experiment from the main text was repeated. However, instead of a gradient-boosted tree,
a linear regression module was used as the machine-learning model. This led to a substantial enough reduction in
performance that the classical baseline outperformed the prediction-powered approach. See Fig. S4 for the results.
Due to the reduction of power, for the same null hypothesis as in the main text, the prediction-powered approach
required n = 40 data points to reject, while the classical baseline required n = 35.
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Figure S4: Deforestation analysis with a linear model. This is the same figure as Fig. 2D, with the same color
coding; the prediction-powered approach is green, the classical approach is gray, and the imputation approach is gold.
However, here the gradient-boosted tree was replaced with an ordinary linear regression. The drop in performance
causes the classical intervals to outperform the prediction-powered intervals in terms of power.

Unlabeled Data Set is Too Small
The AlphaFold-based proteomic analysis from the main text was repeated. However, N = 1000 data points were
randomly chosen as the unlabeled dataset. The rest of the procedure is performed exactly the same way as described
in the main text. The decrease in sample size led to a reduction in power, and in the regime n > N , the classical
baseline outperformed the prediction-powered approach. See Fig. S5 for the results. For the same null hypothesis as
in the main text, the prediction-powered approach required n = 869 data points to reject, while the classical baseline
required n = 652.
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Figure S5: AlphaFold analysis with a small unlabeled dataset. This is the same figure as Fig. 2A, with the same
color coding; the prediction-powered approach is green, the classical approach is gray, and the imputation approach is
gold. However, here N was taken to be 1000. It can be seen that, when n > N , the classical baseline outperforms the
prediction-powered one.

Validity of Prediction-Powered Inference
Our main contribution is a technique for inference on estimands that can be expressed as the solution to a convex
optimization problem. Formally, estimands of the following form are considered

θ∗ = argmin
θ∈Rp

E [Lθ(Xi, Yi)] ,

for a loss function Lθ : X ×Y → R that is convex in θ ∈ Rp, for some p ∈ N. This paradigm captures problems such
as mean estimation, median and general quantile estimation, estimation of linear and logistic regression coefficients,
among others.

In the following, the term ∇Lθ denotes a subgradient of Lθ with respect to θ. Under mild conditions, convexity
ensures that θ∗ can also be expressed as the value solving

E [∇Lθ∗(Xi, Yi)] = 0. (S1)

Henceforth, convex estimation problems where θ∗ satisfies (S1) will be called nondegenerate, and mild conditions that
ensure this regularity will be later discussed.

The measure of fit on the imputed data will be defined as:

mθ =
1

N

N∑
i=1

∇Lθ(X
′
i, Ŷ

′
i ).

Next, the rectifier is defined as the difference between the measure of fit computed on the labeled data, (X,Y ), and
the labeled data when the true outcomes are replaced with predicted ones, (X, Ŷ ):

∆θ =
1

n

n∑
i=1

(
∇Lθ(Xi, Yi)−∇Lθ(Xi, Ŷi)

)
.

Further denoting by∇Lθ,j(x, y) the j-th coordinate of∇Lθ(x, y), the corresponding standard deviations are denoted
as:

σ̂2
∆θ,j

=
1

n

n∑
i=1

(
∇Lθ,j(Xi, Yi)−∇Lθ,j(Xi, Ŷi)−∆θ,j

)2
; σ̂2

mθ,j
=

1

N

N∑
i=1

(
∇Lθ,j(X

′
i, Ŷ

′
i )−mθ,j

)2
,

for j ∈ [p].
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Throughout, zq denotes the q-quantile of the standard normal distribution.

The main mathematical result of this work is stated in Theorem S1.

Theorem S1 (Validity of prediction-powered inference). Let the labeled and unlabeled data be sampled i.i.d.. Suppose
that the convex estimation problem is nondegenerate as in (S1) and that n

N → p, for some p ∈ (0, 1). Fix α ∈ (0, 1)
and let

CPP
α = {θ : |mθ +∆θ| ≤ wθ(α)} , (S2)

where wθ(α) ∈ Rp has j-th coordinate equal to wθ,j(α) = z1−α/(2p)

√
σ̂2
∆θ,j

n +
σ̂2
mθ,j

N , and the inequality in (S2) is
applied coordinatewise. Then,

lim inf
n,N→∞

P (θ∗ ∈ CPP
α ) ≥ 1− α.

Proof. The proof will show that θ∗ ̸∈ CPP
α with probability at most α in the limit; that is,

lim sup
n,N→∞

P

|∆θ∗,j +mθ∗,j | > z1−α/(2p)

√
σ̂2
∆θ∗ ,j

n
+

σ̂2
mθ∗ ,j

N
, ∀j ∈ [p]

 ≤ α.

For each j ∈ [p], the central limit theorem implies that
√
n(∆θ∗,j − E[∆θ∗,j ])⇒ N (0, σ2

∆θ∗ ,j
);
√
N(mθ∗,j − E[mθ∗,j ])⇒ N (0, σ2

mθ∗ ,j
),

where σ2
∆θ∗ ,j

is the variance of ∇Lθ∗,j(Xi, Yi) − ∇Lθ∗,j(Xi, Ŷi) and σ2
mθ∗ ,j

is the variance of ∇Lθ∗,j(Xi, Ŷi).
Therefore, by Slutsky’s theorem,

√
N (∆θ∗,j +mθ∗,j − E[∆θ∗,j +mθ∗,j ]) =

√
n (∆θ∗,j − E[∆θ∗,j ])

√
N

n
+
√
N (mθ∗,j − E[mθ∗,j ])

⇒ N
(
0,

1

p
σ2
∆θ∗ ,j

+ σ2
mθ∗ ,j

)
.

This in turn implies

lim sup
n,N→∞

P

(
|∆θ∗,j +mθ∗,j − E [∆θ∗,j +mθ∗,j ]| > z1−α/(2p)

σ̂j√
N

)
≤ α

p
,

where σ̂2
j is a consistent estimate of the variance 1

pσ
2
∆θ∗ ,j

+ σ2
mθ∗ ,j

. Define σ̂2
j = σ̂2

∆θ∗ ,j
N
n + σ̂2

mθ∗ ,j
; this estimate is

consistent because the two terms are individually consistent estimates of the respective variances. Now notice that

E [∆θ∗ +mθ∗ ] = E
[
(∇Lθ∗(Xi, Yi)−∇Lθ∗(Xi, Ŷi)) +∇Lθ∗(X ′

i, Ŷ
′
i )
]
= E[∇Lθ∗(Xi, Yi)] = 0,

where the last step follows by the nondegeneracy condition. Putting together the previous two displays and the choice
of σ̂j derived above, and applying a union bound yields

lim sup
n,N→∞

P

∃j ∈ [p] : |∆θ∗,j +mθ∗,j | > z1−α/(2p)

√
σ̂2
∆θ∗ ,j

n
+

σ̂2
mθ∗ ,j

N


≤

p∑
j=1

lim sup
n,N→∞

P

|∆θ∗,j +mθ∗,j | > z1−α/(2p)

√
σ̂2
∆θ∗ ,j

n
+

σ̂2
mθ∗ ,j

N


=

p∑
j=1

lim sup
n,N→∞

P
(
|∆θ∗,j +mθ∗,j | > z1−α/(2p)σ̂j

)
≤

p∑
j=1

α

p

= α.

Therefore, lim supn,N→∞ P (θ∗ ̸∈ CPP
α ) ≤ α.
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Most practical problems are nondegenerate (S1). For example, if the loss is differentiable for all θ ∈ Rp, then the
problem is immediately nondegenerate. Furthermore, if the data distribution does not have point masses and, for every
θ, Lθ(x, y) is nondifferentiable only for a measure-zero set of (x, y) pairs, then the problem is again nondegenerate.

Algorithms
Prediction-Powered Confidence Intervals
The algorithms previously referenced in Table 1 are presented. The algorithms are derived by instantiating Theorem S1
with the appropriate loss function dependent on the estimand. In addition, guarantees of their formal validity are stated.

Algorithm S1 Prediction-powered mean estimation

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), error level α ∈ (0, 1)

1: θ̂PP ← θ̂ −∆ := 1
N

∑N
i=1 Ŷ

′
i − 1

n

∑n
i=1(Ŷi − Yi)

2: σ̂2
Ŷ ′ ← 1

N

∑N
i=1(Ŷ

′
i − θ̂)2

3: σ̂2
Ŷ−Y

← 1
n

∑n
i=1(Ŷi − Yi −∆)2

4: w(α)← z1−α/2

√
σ̂2
Ŷ −Y

n +
σ̂2
Ŷ ′
N

Output: prediction-powered confidence set CPP
α =

(
θ̂PP ± w(α)

)

Algorithm S2 Prediction-powered median estimation

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), error level α ∈ (0, 1)
1: Construct fine grid Θgrid between mini∈[N ] Ŷ

′
i and maxi∈[N ] Ŷ

′
i

2: for θ ∈ Θgrid do
3: ∆θ ← 1

n

∑n
i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

})
4: mθ ← 1

2N

∑N
i=1 sign

(
θ − Ŷ ′

i

)
5: σ̂2

∆θ
← 1

n

∑n
i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

}
−∆θ

)2
6: σ̂2

mθ
← 1

N

∑N
i=1

(
1

{
Ŷ ′
i ≤ θ

}
−mθ

)2
7: wθ(α)← z1−α/2

√
σ̂2
∆θ

n +
σ̂2
mθ

N

Output: prediction-powered confidence set CPP
α = {θ ∈ Θgrid : |mθ +∆θ| ≤ wθ(α)}

Algorithm S3 Prediction-powered quantile estimation

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), quantile q, error level α ∈ (0, 1)
1: Construct fine grid Θgrid between mini∈[N ] Ŷ

′
i and maxi∈[N ] Ŷ

′
i

2: for θ ∈ Θgrid do
3: ∆θ ← 1

n

∑n
i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

})
4: F̂θ ← 1

N

∑N
i=1 1

{
Ŷ ′
i ≤ θ

}
5: σ̂2

∆θ
← 1

n

∑n
i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

}
−∆θ

)2
6: σ̂2

Ŷ ′,θ
← 1

N

∑N
i=1

(
1

{
Ŷ ′
i ≤ θ

}
− F̂θ

)2
7: wθ(α)← z1−α/2

√
σ̂2
∆θ

n +
σ̂2
Ŷ ′,θ
N

Output: prediction-powered confidence set CPP
α =

{
θ ∈ Θgrid : |F̂θ +∆θ − q| ≤ wθ(α)

}
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Algorithm S4 Prediction-powered linear regression

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), coefficient j∗, error level α ∈ (0, 1)

1: θ̂PP ← θ̂ −∆ := X ′†Ŷ ′ −X†(f − Y )

2: Σ′ ← 1
N (X ′)⊤X ′, M ′ ← 1

N

∑N
i=1(Ŷ

′
i − (X ′

i)
⊤θ̂)2X ′

i(X
′
i)

⊤

3: V ′ ← (Σ′)−1M ′(Σ′)−1

4: Σ← 1
nX

⊤X , M ← 1
n

∑n
i=1(Ŷi − Yi −X⊤

i ∆)2XiX
⊤
i

5: V ← Σ−1MΣ−1

6: w(α)← z1−α/2

√
Vj∗j∗

n +
V ′
j∗j∗

N

Output: prediction-powered confidence set CPP
α =

(
θ̂PP
j∗ ± w(α)

)
Algorithm S5 Prediction-powered logistic regression

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), error level α ∈ (0, 1)
1: Construct fine grid Θgrid ⊂ Rd of possible coefficients
2: ∆j ← 1

n

∑n
i=1 Xi,j(Ŷi − Yi), j ∈ [d]

3: σ̂2
∆,j ← 1

n

∑n
i=1

(
Xi,j(Ŷi − Yi)−∆j

)2
, j ∈ [d]

4: for θ ∈ Θgrid do
5: mθ,j ← 1

N

∑N
i=1 X

′
i,j

(
µθ(X

′
i)− Ŷ ′

i

)
, j ∈ [d], where µθ(x) =

1
1+exp(−x⊤θ)

6: σ̂2
mθ,j

← 1
N

∑N
i=1

(
X ′

i,j(µθ(X
′
i)− Ŷ ′

i )−mθ,j

)2
, j ∈ [d]

7: wθ,j(α)← z1−α/(2d)

√
σ̂2
∆,j

n +
σ̂2
mθ,j

N , j ∈ [d]

Output: prediction-powered confidence set CPP
α = {θ ∈ Θgrid : |mθ,j +∆j | ≤ wθ,j(α),∀j ∈ [d]}

Algorithm S6 Prediction-powered convex risk minimization

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), error level α ∈ (0, 1) , gradient function
∇Lθ : X × Y → Rp

1: Construct fine grid Θgrid ⊂ Rp of possible solutions
2: for θ ∈ Θgrid do
3: ∆θ,j ← 1

n

∑n
i=1

(
∇Lθ,j(Xi, Yi)−∇Lθ,j(Xi, Ŷi)

)
, j ∈ [p]

4: σ̂2
∆θ,j

← 1
n

∑n
i=1

(
∇Lθ,j(Xi, Yi)−∇Lθ,j(Xi, Ŷi)−∆θ,j

)2
, j ∈ [p]

5: mθ,j ← 1
N

∑N
i=1∇Lθ,j(X

′
i, Ŷ

′
i ), j ∈ [p]

6: σ̂2
mθ,j

← 1
N

∑N
i=1

(
∇Lθ,j(X

′
i, Ŷ

′
i )−mθ,j

)2
, j ∈ [p]

7: wθ,j(α)← z1−α/(2p)

√
σ̂2
∆θ,j

n +
σ̂2
mθ,j

N , j ∈ [p]

Output: prediction-powered confidence set CPP
α = {θ ∈ Θgrid : |mθ,j +∆θ,j | ≤ wθ,j(α),∀j ∈ [p]}

Regularity conditions. All algorithms stated in this section rely on confidence intervals derived from the central
limit theorem. For such intervals to be asymptotically valid, it is required that the two quantities whose mean is being
estimated, namely∇Lθ(Xi, Yi)−∇Lθ(Xi, Ŷi) and∇Lθ(Xi, Ŷi), have at least the first two moments (see Proposition
S2).

For Corollary S3 to hold, the same conditions are required as those needed for classical linear regression intervals
to cover the target. These conditions are very weak; in particular, it is not required that the true data-generating
process be linear or the errors be homoskedastic. See Buja et al. (29) for a detailed discussion. The following are the
required conditions, as stated in Theorem 3 of Halbert White’s seminal paper (30). The data (X1, Y1), . . . , (Xn, Yn) is
generated as Xi = h(Zi), Yi = g(Zi) + ϵi, where (Zi, ϵi) are mean-zero i.i.d. random draws from some distribution
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such that E[ZiZ
⊤
i ] and E[XiX

⊤
i ] are finite and nonsingular, and E[ϵ2i ], E[Y 2

i XiX
⊤
i ], and E[X2

ijXiX
⊤
i ] are all finite.

In addition, it is assumed that h and g are measurable. Under these conditions,
√
n(θ̂OLS − θ∗)⇒ N (0,Σ−1V Σ−1),

where θ∗ = argminθ E[(Y1 − X⊤
1 θ)2], θ̂OLS = argminθ

1
n

∑n
i=1(Yi − X⊤

i θ)2, Σ = E[X1X
⊤
1 ], V = E[(Y1 −

X⊤
1 θ∗)2X1X

⊤
1 ]. Moreover, 1

nX
⊤X → Σ and 1

n

∑n
i=1(Yi −X⊤

i θ̂OLS)
2XiX

⊤
i → V almost surely.

Corollary S1 (Mean estimation). Let θ∗ be the mean outcome:

θ∗ = E[Yi].

Then, the prediction-powered confidence interval in Algorithm S1 is valid: lim infn,N→∞ P
(
θ∗ ∈ CPP

α

)
≥ 1− α.

Proof. The prediction-powered confidence set constructed in Algorithm S1 is a special case of the prediction-powered
confidence set constructed in Theorem S1. The proof then follows directly by the guarantee of Theorem S1.

Since∇Lθ(y) = θ − y, one has

∆θ ≡∆ =
1

n

n∑
i=1

(Ŷi − Yi); mθ = θ − 1

N

N∑
i=1

Ŷ ′
i .

Therefore, the set CPP
α from Theorem S1 can be written as

CPP
α =

{
θ :

∣∣∣∣∣θ − 1

N

N∑
i=1

Ŷ ′
i +

1

n

n∑
i=1

(Ŷi − Yi)

∣∣∣∣∣ ≤ wθ(α)

}
=

(
1

N

N∑
i=1

Ŷ ′
i −

1

n

n∑
i=1

(Ŷi − Yi)± wθ(α)

)
.

This is exactly the set constructed in Algorithm S1, which completes the proof.

The median algorithm (Algorithm S2) is a special case of the general quantile algorithm (Algorithm S3), obtained
by setting q = 0.5. Therefore, we only state the guarantees for Algorithm S3.

Corollary S2 (Quantile estimation). Let θ∗ be the q-quantile:

θ∗ = min{θ : P (Yi ≤ θ) ≥ q}.

Then, the prediction-powered confidence set in Algorithm S3 is valid: lim infn,N→∞ P
(
θ∗ ∈ CPP

α

)
≥ 1− α.

Proof. Like in the proof of Corollary S1, we proceed by showing that the prediction-powered confidence set con-
structed in Algorithm S3 is a special case of the prediction-powered confidence set constructed in Theorem S1. Then,
we simply invoke Theorem S1.

Since∇Lθ(y) = −q + 1 {y ≤ θ}, we have

∆θ =
1

n

n∑
i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

})
; mθ = −q + F̂θ,

where F̂θ = 1
N

∑N
i=1 1

{
Ŷ ′
i ≤ θ

}
. Therefore, the set CPP

α from Theorem S1 can be written as

CPP
α =

{
θ :

∣∣∣∣∣ 1n
n∑

i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

})
− q + F̂θ

∣∣∣∣∣ ≤ wθ(α)

}
=
{
θ :
∣∣∣F̂θ +∆θ − q

∣∣∣ ≤ wθ(α)
}
.

This is exactly the set constructed in Algorithm S3. Therefore, the guarantee of Corollary S2 follows by the guarantee
of Theorem S1.

10



Corollary S3 (Linear regression). Fix j∗ ∈ [d]. Let θ∗ be the linear regression solution:

θ∗ = argmin
θ∈Rd

E[(Yi −X⊤
i θ)2].

Then, the prediction-powered confidence interval in Algorithm S4 is valid: lim infn,N→∞ P
(
θ∗j∗ ∈ CPP

α

)
≥ 1− α.

Proof. For linear regression, we can derive more powerful prediction-powered confidence intervals than those implied
by Theorem S1 by exploiting the linearity of the least-squares estimator.

As in Theorem S1, we assume that n
N → p, for some fraction p ∈ (0, 1).

Theorem 3 of White (31) implies that
√
n(∆− ∆̄)⇒ N (0,W );

√
N(θ̂ − θ̄)⇒ N (0,W ′),

for appropriately defined coviariance matrices W and W ′, where θ̄ = (E[XiX
⊤
i ])−1E[XiŶi] and ∆̄ = (E[XiX

⊤
i ])−1E[Xi(Ŷi−

Yi)]. With this, we can write the target estimand as θ∗ = (E[XiX
⊤
i ])−1E[XiYi] = θ̄ − ∆̄.

Combining Theorem 3 of White with Slutsky’s theorem, we get

√
N(θ̂PP − θ∗) =

√
N(θ̂ − θ̄)−

√
n(∆− ∆̄)

√
N

n
⇒ N

(
0,W

1

p
+W ′

)
.

White also shows that V and V ′, as defined in Algorithm S4, are consistent estimates of W and W ′, respectively.
Therefore, θ̂PP is asymptotically normal and consistent, and we have a consistent estimate of its covariance. In
particular,

Vj∗j∗
N

n
+ V ′

j∗j∗ →Wj∗j∗
1

p
+W ′

j∗j∗ .

This means that we can construct asymptotically valid confidence intervals via a normal approximation by choosing

width z1−α/2

√
Vj∗j∗

N
n + V ′

j∗j∗

√
1
N = z1−α/2

√
Vj∗j∗

n +
V ′
j∗j∗

N , and this is precisely what Algorithm S4 accom-
plishes.

Corollary S4 (Logistic regression). Let θ∗ be the logistic regression solution:

θ∗ = argmin
θ∈Rd

E
[
−Yiθ

⊤Xi + log(1 + exp(θ⊤Xi))
]
.

Then, the prediction-powered confidence set in Algorithm S5 is valid: lim infn,N→∞ P
(
θ∗ ∈ CPP

α

)
≥ 1− α.

Proof. The proof follows a similar pattern as the first two corollaries, by arguing that the prediction-powered con-
fidence set constructed in Algorithm S5 is a special case of the prediction-powered confidence set constructed in
Theorem S1.

Since∇Lθ(x, y) = x(µθ(x)− y), we have

∆θ ≡∆ =
1

n

n∑
i=1

Xi(Ŷi − Yi); mθ =
1

N

N∑
i=1

X ′
i(µθ(X

′
i)− Ŷ ′

i ).

These quantities are explicitly computed in Algorithm S5. Moreover, the set CPP
α constructed in Algorithm S5 exactly

follows the recipe of Theorem S1, so the proof immediately follows.

Corollary S5 (Convex risk minimization). Let θ∗ be the convex risk minimizer:

θ∗ = argmin
θ∈Rp

E [Lθ(Xi, Yi)] .

Then, the prediction-powered confidence set in Algorithm S6 is valid: lim infn,N→∞ P
(
θ∗ ∈ CPP

α

)
≥ 1− α.

The validity of Algorithm S6 follows directly by Theorem S1.
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Prediction-Powered p-values
By relying on the standard duality between confidence intervals and p-values, we can immediately repurpose the
presented theory to compute valid prediction-powered p-values.

To formalize this, suppose that we want to test the hull hypothesis H0 : θ∗ ∈ Θ0, for some set Θ0 ∈ Rp (for
example, a common choice when p = 1 is Θ0 = R≤0). Let Cα be a valid confidence interval. Then, we can construct
a valid p-value as

P = inf{α : θ0 ̸∈ Cα,∀θ0 ∈ Θ0}.

A p-value P is valid if it is super-uniform under the null, meaning P (P ≤ u) ≤ u for all u ∈ [0, 1]. This is indeed the
case for the p-value defined above, because when θ∗ ∈ Θ0, we have

P (P ≤ u) ≤ P (θ∗ ̸∈ Cu) ≤ u.

The first inequality follows by the definition of P and the fact that θ∗ ∈ Θ0, and the second inequality follows by the
validity of Cu at level 1− u. We are implicitly using the fact that Cu ⊆ Cu′ when u ≥ u′.

The above derivation is a general recipe for deriving p-values from confidence intervals. For the prediction-
powered confidence interval stated in Theorem S1, the corresponding prediction-powered p-value is given by:

PPP = inf {α : |mθ0 +∆θ0 | > wθ0(α), ∀θ0 ∈ Θ0} .

Below we state analogues of Algorithms 1-5 when the goal is to compute a prediction-powered p-value.

Algorithm S7 Prediction-powered p-value for the mean

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), null set Θ0

1: θ̂PP ← θ̂ −∆ := 1
N

∑N
i=1 Ŷ

′
i − 1

n

∑n
i=1(Ŷi − Yi)

2: σ̂2
Ŷ ′ ← 1

N

∑N
i=1(Ŷ

′
i − θ̂)2

3: σ̂2
Ŷ−Y

← 1
n

∑n
i=1(Ŷi − Yi −∆)2

4: Define w(α) := z1−α/2

√
σ̂2
Ŷ −Y

n +
σ̂2
Ŷ ′
N

Output: prediction-powered p-value PPP = inf{α : θ0 ̸∈ (θ̂PP ± w(α)),∀θ0 ∈ Θ0}

Algorithm S8 Prediction-powered p-value for the median

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), null set Θ0

1: for θ ∈ Θ0 do
2: ∆θ ← 1

n

∑n
i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

})
3: mθ ← 1

2N

∑N
i=1 sign

(
θ − Ŷ ′

i

)
4: σ̂2

∆θ
← 1

n

∑n
i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

}
−∆θ

)2
5: σ̂2

mθ
← 1

N

∑N
i=1

(
1

{
Ŷ ′
i ≤ θ

}
−mθ

)2
6: Define wθ(α) := z1−α/2

√
σ̂2
∆θ

n +
σ̂2
mθ

N

Output: prediction-powered p-value PPP = inf {α : θ ∈ Θgrid : |mθ0 +∆θ0 | > wθ0(α),∀θ0 ∈ Θ0}
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Algorithm S9 Prediction-powered p-value for the q-quantile

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), quantile q, null set Θ0

1: for θ ∈ Θ0 do
2: ∆θ ← 1

n

∑n
i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

})
3: F̂θ ← 1

N

∑N
i=1 1

{
Ŷ ′
i ≤ θ

}
4: σ̂2

∆θ
← 1

n

∑n
i=1

(
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

}
−∆θ

)2
5: σ̂2

Ŷ ′,θ
← 1

N

∑N
i=1

(
1

{
Ŷ ′
i ≤ θ

}
− F̂θ

)2
6: Define wθ(α) := z1−α/2

√
σ̂2
∆θ

n +
σ̂2
Ŷ ′,θ
N

Output: prediction-powered p-value PPP = inf
{
α : |F̂θ0 +∆θ0 − q| > wθ0(α),∀θ0 ∈ Θ0

}
Algorithm S10 Prediction-powered p-value for linear regression coefficients

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), coefficient j∗, null set Θ0

1: θ̂PP ← θ̂ −∆ := X ′†Ŷ ′ −X†(Ŷ − Y )

2: Σ′ ← 1
N (X ′)⊤X ′, M ′ ← 1

N

∑N
i=1(Ŷ

′
i − (X ′

i)
⊤θ̂)2X ′

i(X
′
i)

⊤

3: V ′ ← (Σ′)−1M ′(Σ′)−1

4: Σ← 1
nX

⊤X , M ← 1
n

∑n
i=1(Ŷi − Yi −X⊤

i ∆)2XiX
⊤
i

5: V ← Σ−1MΣ−1

6: Define w(α) := z1−α/2

√
Vj∗j∗

n +
V ′
j∗j∗

N

Output: prediction-powered confidence set CPP
α = inf{α : θ0 ̸∈ (θ̂PP

j∗ ± w(α)),∀θ0 ∈ Θ0}

Algorithm S11 Prediction-powered p-value for logistic regression coefficients

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), null set Θ0

1: ∆j ← 1
n

∑n
i=1 Xi,j(Ŷi − Yi), j ∈ [d]

2: σ̂2
∆,j ← 1

n

∑n
i=1

(
Xi,j(Ŷi − Yi)−∆j

)2
, j ∈ [d]

3: for θ ∈ Θ0 do
4: mθ,j ← 1

N

∑N
i=1 X

′
i,j

(
µθ(X

′
i)− Ŷ ′

i

)
, j ∈ [d], where µθ(x) =

1
1+exp(−x⊤θ)

5: σ̂2
mθ,j

← 1
N

∑N
i=1

(
X ′

i,j(µθ(X
′
i)− Ŷ ′

i )−mθ,j

)2
, j ∈ [d]

6: Define wθ,j(α) := z1−α/(2d)

√
σ̂2
∆,j

n +
σ̂2
mθ,j

N , j ∈ [d]

Output: prediction-powered p-value PPP = inf {α : |mθ0,j +∆j | > wθ0,j(α),∀j ∈ [d], θ0 ∈ Θ0}

Corollary S6 (Mean p-value). Let θ∗ be the mean outcome:

θ∗ = E[Yi].

Then, the prediction-powered p-value in Algorithm S7 is valid: under the null, lim infn,N→∞ P
(
PPP ≤ u

)
≤ u,∀u ∈ [0, 1].

Corollary S7 (Quantile p-value). Let θ∗ be the q-quantile:

θ∗ = min{θ : P (Yi ≤ θ) ≥ q}.

Then, the prediction-powered p-value in Algorithm S9 is valid: under the null, lim infn,N→∞ P
(
PPP ≤ u

)
≤ u,∀u ∈ [0, 1].

Corollary S8 (Linear regression p-value). Fix j∗ ∈ [d]. Let θ∗ be the linear regression solution:

θ∗ = argmin
θ∈Rd

E[(Yi −X⊤
i θ)2].

Then, the prediction-powered p-value in Algorithm S10 is valid: under the null, lim infn,N→∞ P
(
PPP ≤ u

)
≤ u,∀u ∈ [0, 1].
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Corollary S9 (Logistic regression p-value). Let θ∗ be the logistic regression solution:

θ∗ = argmin
θ∈Rd

E
[
−Yiθ

⊤Xi + log(1 + exp(θ⊤Xi))
]
.

Then, the prediction-powered p-value in Algorithm S11 is valid: under the null, lim infn,N→∞ P
(
PPP ≤ u

)
≤ u,∀u ∈ [0, 1].

Nonasymptotic Analysis of Prediction-Powered Inference
Just like in most common confidence interval constructions, in Theorem S1 we used an argument based on the central
limit theorem to construct the prediction-powered confidence set; as a result, the validity statement is asymptotic. We
opted to present Theorem S1 as the main technical result due to its interpretability. However, the key underlying princi-
ples of prediction-powered inference can also be applied nonasymptotically. In this section we state the nonasymptotic
counterparts of the previous results.

Validity
Below we state a nonasymptotic analogue of Theorem S1.

To state the result, let m̄θ denote the population-level measure of fit on the imputed data:

m̄θ = E[∇Lθ(Xi, Ŷi)].

Similarly, we let ∆̄θ denote the population-level rectifier:

∆̄θ = E
[
∇Lθ(Xi, Yi)−∇Lθ(Xi, Ŷi)

]
.

Theorem S2 (Validity of prediction-powered inference: nonasymptotic). Let the labeled and unlabeled data be sam-
pled i.i.d.. Suppose that the convex estimation problem is nondegenerate as in (S1). Fix α ∈ (0, 1) and δ ∈ (0, α).
Suppose that, for any θ ∈ Rp, we can constructRθ(δ) and Tθ(α− δ) satisfying

P
(
∆̄θ ∈ Rθ(δ)

)
≥ 1− δ; P (m̄θ ∈ Tθ(α− δ)) ≥ 1− (α− δ).

Let CPP
α = {θ : 0 ∈ Rθ(δ) + Tθ(α− δ)}, where + denotes the Minkowski sum.1 Then,

P (θ∗ ∈ CPP
α ) ≥ 1− α.

Proof. We show that θ∗ ∈ CPP
α with probability at least 1− α; that is, with probability at least 1− α it holds that

0 ∈ Rθ∗(δ) + Tθ∗(α− δ).

Consider the event E = {∆̄θ∗ ∈ Rθ∗(δ)} ∩ {m̄θ∗ ∈ Tθ∗(α− δ)}. By a union bound, P (E) ≥ 1 − α. On the event
E, we have that

E[∇Lθ∗(Xi, Yi)] = E[∇Lθ∗(Xi, Yi)]− E[∇Lθ∗(Xi, Ŷi)] + E[∇Lθ∗(Xi, Ŷi)]

= ∆̄θ∗ + m̄θ∗ ∈ Rθ∗(δ) + Tθ∗(α− δ).

The theorem finally follows by invoking the nondegeneracy condition, which ensures E[∇Lθ∗(Xi, Yi)] = 0, so we
have shown 0 ∈ Rθ∗(δ) + Tθ∗(α− δ).

We note that, because m̄θ and ∆̄θ are mean values of a well-specified quantity, the sets Rθ(δ) and Tθ(α− δ) can
be constructed using any off-she-shelf algorithm for computing a confidence intervals for the mean. In our explicit
algorithm statements below, we choose a variance-adaptive confidence interval for the mean due to Waudby-Smith
and Ramdas (32), which we state in Algorithm S15. We opt to present this construction as the default nonasymptotic
confidence interval for the mean because of its strong practical performance. The only assumption required to apply
Algorithm S15 is that the observations are almost surely bounded within a known interval.

1The Minkowski sum of two sets A and B is equal to {a+ b : a ∈ A, b ∈ B}.
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Algorithms
We state nonasymptotically-valid algorithms for prediction-powered mean estimation, quantile estimation, and logistic
regression. These are nonasymptotic counterparts of Algorithms S1, S3, and S5, and they rely on the abstract recipe
from Theorem 2.

Algorithm S12 Prediction-powered mean estimation (nonasymptotic)

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), error levels α, δ ∈ (0, 1), bound B

1: (Ŷ l(α− δ), Ŷ u(α− δ))← MeanCI
(
{Ŷ ′

i }Ni=1, err = α− δ, range = [0, B]
)

2: (Rl(δ),Ru(δ))← MeanCI
(
{Ŷi − Yi}ni=1, err = δ, range = [−B,B]

)
Output: prediction-powered confidence set CPP

α =
(
Ŷ l(α− δ)−Ru(δ), Ŷ u(α− δ)−Rl(δ)

)
Algorithm S13 Prediction-powered quantile estimation (nonasymptotic)

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), quantile q, error levels α, δ ∈ (0, 1)
1: Construct fine grid Θgrid between mini∈[N ] Ŷ

′
i and maxi∈[N ] Ŷ

′
i

2: for θ ∈ Θgrid do
3: (Rl

θ(δ),Ru
θ (δ))← MeanCI

({
1 {Yi ≤ θ} − 1

{
Ŷi ≤ θ

}}n

i=1
, err = δ, range = [−1, 1]

)
4: (F̂ l

θ(α− δ), F̂u
θ (α− δ))← MeanCI

({
1

{
Ŷ ′
i ≤ θ

}}N

i=1
, err = α− δ, range = [0, 1]

)
Output: prediction-powered confidence set CPP

α =
{
θ ∈ Θgrid : q ∈

(
F̂ l
θ(α− δ) +Rl

θ(δ), F̂
u
θ (α− δ) +Ru

θ (δ)
)}

Algorithm S14 Prediction-powered logistic regression (nonasymptotic)

Input: labeled data (X,Y ), unlabeled features X ′, predictions (Ŷ, Ŷ ′), error levels α, δ ∈ (0, 1), bounds Bj

1: Construct fine grid Θgrid ⊂ Rd of possible coefficients

2: (Rl
j(δ),Ru

j (δ))← MeanCI
(
{Xi,j(Ŷi − Yi)}ni=1, err = δ, range = [−Bj , Bj ]

)
, j ∈ [d]

3: for θ ∈ Θgrid do
4: (ml

θ,j(α−δ),mu
θ,j(α−δ))← MeanCI

(
{X ′

i,j

(
µθ(X

′
i)− Ŷ ′

i

)
}Ni=1, err =

α−δ
d , range = [−Bj , Bj ]

)
, j ∈ [d],

5: where µθ(x) =
1

1+exp(−x⊤θ)

Output: prediction-powered confidence set CPP
α =

{
θ ∈ Θgrid : 0 ∈

[
ml

θ,j(α− δ) +Rl
j(δ),m

u
θ,j(α− δ) +Ru

j (δ)
]
,∀j ∈ [d]

}
Corollary S10 (Mean estimation: nonasymptotic). Let θ∗ be the mean outcome:

θ∗ = E[Yi].

Suppose that Yi, Ŷi ∈ [0, B] almost surely. Then, the prediction-powered confidence set in Algorithm S12 is valid:
P (θ∗ ∈ CPP

α ) ≥ 1− α.

Proof. The proof follows by instantiating the terms in Theorem 2. In particular, we have E[∇Lθ(Ŷi)] = θ − E[Ŷi],
hence it is valid to construct Tθ(α− δ) as:

mθ ∈ Tθ(α− δ) = θ − (Ŷ l(α− δ), Ŷ u(α− δ)).

Therefore, the condition 0 ∈ R(δ) + Tθ(α− δ) becomes

0 ∈ (Rl(δ),Ru(δ)) + θ − (Ŷ l(α− δ), Ŷ u(α− δ)),

which after rearranging and simplifying is equivalent to

θ ∈
(
Ŷ l(α− δ)−Ru(δ), Ŷ u(α− δ)−Rl(δ)

)
.

This set exactly matches the set CPP
α constructed in Algorithm S12.
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Corollary S11 (Quantile estimation: nonasymptotic). Let θ∗ be the q-quantile:

θ∗ = min{θ : P (Yi ≤ θ) ≥ q}.

Then, the prediction-powered confidence set in Algorithm S13 is valid: P (θ∗ ∈ CPP
α ) ≥ 1− α.

Proof. The proof follows by instantiating the terms in Theorem 2. First, we have E[∇Lθ(Ŷi)] = −q + P (Ŷi ≤ θ);
therefore, it is valid to construct Tθ(α− δ) as:

E[∇Lθ(Ŷi)] ∈ Tθ(α− δ) = −q +
(
F̂ l
θ(α− δ), F̂u

θ (α− δ)
)
.

Therefore, the condition 0 ∈ Rθ(δ) + Tθ(α− δ) becomes

q ∈
(
F̂ l
θ(α− δ) +Rl

θ(δ), F̂
u
θ (α− δ) +Ru

θ (δ)
)
,

which matches the condition used to form CPP
α in Algorithm S13.

Corollary S12 (Logistic regression: nonasymptotic). Let θ∗ be the logistic regression solution:

θ∗ = argmin
θ∈Rd

E[−Yiθ
⊤Xi + log(1 + exp(θ⊤Xi))].

Suppose that |Xi,j | ≤ Bj and Yi, Ŷi ∈ [0, 1] almost surely. Then, the prediction-powered confidence set in Algorithm
S14 is valid: P (θ∗ ∈ CPP

α ) ≥ 1− α.

Proof. We instantiate the relevant terms in Theorem 2. We have E[∇Lθ(Xi, Ŷi)] = E
[
−XiŶi +Xi

1
1+exp(−X⊤

i θ)

]
.

Note that, because Xi is coordinatewise bounded, and Yi,
1

1+exp(−X⊤
i θ)
∈ [0, 1], we have |(∇Lθ(Xi, Ŷi))j | ≤ Bj

almost surely. Therefore, we can construct Tθ(α− δ) as:

mθ ∈ Tθ(α− δ) =
(
ml

θ(α− δ),mu
θ (α− δ)

)
=
(
ml

θ,1(α− δ),mu
θ,1(α− δ)

)
× · · · ×

(
ml

θ,d(α− δ),mu
θ,d(α− δ)

)
.

Since the rectifier has no dependence on θ, the condition 0 ∈ Rθ(δ) + Tθ(α− δ) becomes

0 ∈ (Rl
j(δ),Ru

j (δ)) +
(
ml

θ,j(α− δ),mu
θ,j(α− δ)

)
, ∀j ∈ [d],

which matches the condition in CPP
α in Algorithm S14.

We note that there exists an analogous nonasymptotic algorithm for linear regression, however we do not recom-
mend it in practice. The reason is that the refined (but asymptotic) analysis used to prove Corollary S3 shows that
it is sufficient to analyze a one-dimensional rectifier, while directly invoking Theorem 2 would require analyzing a
d-dimensional rectifier and thus yields more conservative intervals.

Algorithm S15 MeanCI (see Proposition S1)

Input: data points {Z1, . . . , Zn}, error level α ∈ (0, 1), range [L,U ] s.t. Zi ∈ [L,U ]
1: For all i ∈ [n], let Zi ← (Zi − L)/(U − L) ▷ normalize data to interval [0, 1]
2: Construct fine grid Mgrid of interval [0, 1]
3: Initialize active set A = Mgrid

4: for t ∈ 1, . . . , n do
5: Set µ̂t ←

0.5+
∑t

j=1 Zj

t+1 , σ̂2
t ←

0.25+
∑t

j=1(Zj−µ̂t)
2

t+1 , λt ←
√

2 log(2/α)
nσ̂2

t−1

6: for m ∈ A do
7: M+

t (m)←
(
1 + min

(
λt,

0.5
m

)
(Zt −m)

)
M+

t−1(m)

8: M−
t (m)←

(
1−min

(
λt,

0.5
1−m

)
(Zt −m)

)
M−

t−1(m)

9: Mt(m)← 1
2 max

{
M+

t (m), M−
t (m)

}
▷ construct test martingale for m ∈ [0, 1]

10: if Mt(m) ≥ 1/α then
11: A ← A \ {m} ▷ Remove m from active set
Output: Confidence set for the mean Cα = {m(U − L) + L : m ∈ A}
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Inference Under Distribution Shift
In the main text we focused on forming prediction-powered confidence intervals when the labeled and unlabeled data
come from the same distribution. Herein, we extend our tools to the case where the labeled data (X,Y ) comes from
P and the unlabeled data (X ′, Y ′)—which defines the target of inference θ∗—comes from Q, and these are related by
either a label shift or a covariate shift. For covariate shift, we handle all estimation problems previously studied; for
label shift, we handle certain types of linear problems.

We will write EQ,EP, etc to indicate which distribution the data inside the expectation is sampled from.

Covariate Shift
First, we assume that Q is a known covariate shift of P. That is, if we denote by Q = QX ·QY |X and P = PX · PY |X
the relevant marginal and conditional distributions, we assume that QY |X = PY |X . As in previous sections, we
consider estimands of the form

θ∗ = argmin
θ∈Θ

EQ[Lθ(Xi, Yi)]. (S3)

Estimands of the form (S3) can be related to risk minimizers on P using the Radon-Nikodym derivative. In
particular, suppose that QX is dominated by PX and assume that the Radon-Nikodym derivative w(x) = QX

PX
(x) is

known. Then, we can rewrite (S3) as
θ∗ = argmin

θ∈Θ
EP[L

w
θ (Xi, Yi)],

where Lw
θ (x, y) = w(x)Lθ(x, y). In words, risk minimizers on Q can simply be written as risk minimizers on P, but

with a reweighted loss function. This permits inference on the rectifier to be based on data sampled from P as before.
For concreteness, we explain the approach in detail for convex risk minimizers. Let

m̄w
θ = EP

[
∇Lw

θ (Xi, Ŷi)
]
; ∆̄w

θ = EP

[
∇Lw

θ (Xi, Yi)−∇Lw
θ (Xi, Ŷi)

]
,

where ∇Lw
θ (x, y) = ∇Lθ(x, y) · w(x) and ∇Lθ is a subgradient of Lθ as before. A confidence set for the above

rectifier suffices for prediction-powered inference on θ∗.

Corollary S13 (Covariate shift). Let the unlabeled data distribution be a covariate shift of the labeled data distribu-
tion. Suppose that the problem (S3) is a nondegenerate convex estimation problem. Fix α ∈ (0, 1) and δ ∈ (0, α).
Suppose that, for any θ ∈ Rp, we can constructRθ(δ) and Tθ(α− δ) satisfying

P
(
∆̄w

θ ∈ Rθ(δ)
)
≥ 1− δ; P (m̄w

θ ∈ Tθ(α− δ)) ≥ 1− (α− δ).

Let CPP
α = {θ : 0 ∈ Rθ(δ) + Tθ(α− δ)}, where + denotes the Minkowski sum. Then,

P (θ∗ ∈ CPP
α ) ≥ 1− α.

Label Shift
Next, we analyze classification problems where the proportions of the classes in the labeled data is different from those
in the unlabeled data. This problem has been studied before in the literature on domain adaptation, e.g. by Lipton et
al. (33), but our treatment focuses on the formation of confidence intervals. Formally, let Y = {1, ...,K} be the label
space and assume that QX|Y = PX|Y . We consider estimands of the form

θ∗ = EQY
[ν(Y )],

where ν : Y → R is a fixed function. For example, choosing ν(y) = 1 {y = k} for some k ∈ [K] asks for inference
on the proportion of instances that belong to class k.

Using an analogous decomposition to the one for mean estimation, we can write

θ∗ = EQŶ
[ν(Ŷ )] + (EQY

[ν(Y )]− EQŶ
[ν(Ŷ )]) = θ̄ + ∆̄,
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where QŶ denotes the distribution of the prediction Ŷ based on features X ∼ QX . The quantity θ̄ can be estimated us-
ing the unlabeled data from Q and the model. Estimating the quantity ∆̄ using samples from P will require leveraging
the structure of the distribution shift. Central to our analysis will be the confusion matrix

Kj,l = Q
(
Ŷ = j

∣∣∣ Y = l
)
, j, l ∈ [K].

The label-shift assumption implies thatKj,l = P
(
Ŷ = j | Y = l

)
, which can be estimated from labeled data sampled

from P. In particular, we estimate K from the labeled data as

K̂j,l =
1

n(l)

n∑
i=1

1

{
Ŷi = j, Yi = l

}
, where n(l) =

n∑
i=1

1 {Yi = l} .

Similarly, we can estimate QŶ (k), k ∈ [K] as

Q̂Ŷ (k) =
1

N

N∑
i=1

1

{
Ŷ ′
i = k

}
.

Treating QŶ and QY as vectors, notice that we can write QŶ = KQY , and hence QY = K−1QŶ . This leads to a
natural estimate of QY , Q̂Y = K̂−1Q̂Ŷ . Below, we use these quantities to construct a prediction-powered confidence
interval for θ∗ = EQY

[ν(Y )].

Theorem S3 (Label shift). Let the unlabeled data distribution be a label shift of the labeled data distribution. Fix
α ∈ (0, 1) and δ ∈ (0, α). Let

CPP
α =

(
EQ̂Y

[ν(Y )]±

(
max

l,k∈[K]
max
p∈Cl,k

|K̂l,k − p|+
√

1

2N
log

2

α− δ

))
,

where

Cl,k =

{
p : n(k)K̂l,k ∈

[
F−1
Binom(n(k),p)

(
δ

2K2

)
, F−1

Binom(n(k),p)

(
1− δ

2K2

)]}
and FBinom(n(k),p) denotes the Binomial CDF. Then,

P (θ∗ ∈ CPP
α ) ≥ 1− α.

Naturally, the confidence interval becomes more conservative as the number of classes grows. Also, the power of the
bound depends on the smallest number of instances observed for a particular class.

Proof. Notice that we can write EQY
[ν(Y )] = ν⊤QY , where on the right-hand side we are treating ν = (ν(1), . . . , ν(K))

and QY = (QY (1), . . . ,QY (K)) as vectors of length K. We can write similar expressions for QŶ , Q̂Y , etc. Using
this notation, by triangle inequality we have

|θ∗ − ν⊤Q̂Y | = |ν⊤QY − ν⊤Q̂Y | ≤
∣∣∣ν⊤K̂−1(QŶ − Q̂Ŷ )

∣∣∣+ ∣∣∣ν⊤K−1QŶ − ν⊤K̂−1QŶ

∣∣∣ .
We bound the first term using Hölder’s inequality,∣∣∣ν⊤K̂−1(QŶ − Q̂Ŷ )

∣∣∣ ≤ ∥ν⊤K̂−1∥1∥QŶ − Q̂Ŷ ∥∞.

For the second term, we write∣∣∣ν⊤K−1QŶ − ν⊤K̂−1QŶ

∣∣∣ = ∣∣∣ν⊤K̂−1(K̂ − K)K−1QŶ

∣∣∣ .
In the above equation, the factor on the right, K−1QŶ , is exactly equal to QY , and thus lives on the simplex, which
we denote by ∆. Using this fact and Hölder’s inequality,∣∣∣ν⊤K̂−1(K̂ − K)K−1QŶ

∣∣∣ ≤ sup
q∈∆

∣∣∣ν⊤K̂−1(K̂ − K)q
∣∣∣ ≤ ∥∥∥ν⊤K̂−1

∥∥∥
1
sup
q∈∆

∥∥∥(K̂ − K)q∥∥∥
∞

.
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Next, we have
sup
q∈∆
∥(K̂ − K)q∥∞ = max

k∈[K]
∥K̂k −Kk∥∞,

where Kk indexes the k-th column of K. This yields the expression∥∥∥ν⊤K̂−1
∥∥∥
1
sup
q∈∆

∥∥∥(K̂ − K)q∥∥∥
∞

=
∥∥∥ν⊤K̂−1

∥∥∥
1
max
k∈[K]

∥K̂k −Kk∥∞.

Putting everything together, we have

|ν⊤QY − ν⊤Q̂Y | ≤ ∥ν⊤K̂−1∥1
(
∥QŶ − Q̂Ŷ ∥∞ + max

k∈[K]
∥K̂k −Kk∥∞

)
.

Since ∥ν⊤K̂−1∥1 can be evaluated empirically, it remains to bound the distributional distances ∥QŶ − Q̂Ŷ ∥∞ and
maxk∈[K] ∥K̂k −Kk∥∞.

For the first distance, ∥QŶ − Q̂Ŷ ∥∞, we can simply apply the DKWM inequality (34, 35), which gives

∥QŶ − Q̂Ŷ ∥∞ ≤
√

2

N
log

2

α− δ

with probability 1− (α− δ). See (36) for details.

For the second term, maxk∈[K] ∥K̂k − Kk∥∞, since we only have n observations for estimation, we use a more
adaptive concentration result. In particular, for each l, k ∈ [K], n(k)K̂l,k (conditional on the k-th column) follows a
binomial distribution with n(k) draws and success probability Kl,k. Therefore, if we let

Cl,k =

{
p : n(k)K̂l,k ∈

(
F−1
Binom(n(k),p)

(
δ

2K2

)
, F−1

Binom(n(k),p)

(
1− δ

2K2

))}
,

where FBinom(n(k),p) denotes the Binomial CDF, then by a union bound:

P

(
max
k∈[K]

∥K̂k −Kk∥∞ ≥ max
l,k∈[K]

max
p∈Cl,k

|K̂l,k − p|
)
≤ δ.

Combining the last three inequalities yields the final result.

Extensions
Beyond Convex Estimation
The tools developed previously were tailored to unconstrained convex optimization problems. More specifically, they
relied on the property given by equation (S1). In general, however, inferential targets can be defined in terms of
nonconvex losses or they may have (possibly even nonconvex) constraints. For such general optimization problems,
we cannot expect the condition (S1) to hold. In this section we generalize our approach to a broad class of risk
minimizers:

θ∗ = argmin
θ∈Θ

E[Lθ(Xi, Yi)], (S4)

where Lθ : X × Y → R is a possibly nonconvex loss function and Θ is an arbitrary set of admissible parameters.
As before, if θ∗ is not a unique minimizer, our method will return a set that contains all minimizers. We note that,
technically, the approach in Algorithms S1-S6 is valid even for nonconvex problems as long as we know that condition
(S1) holds; e.g., if the loss is differentiable and the optimization is unconstrained. However, even then the set of points
satisfying the condition may be too large and thus the returned confidence sets could be large as well if the optimization
problem does not have a unique minimizer.

The problem (S4) subsumes all previously studied settings. Indeed, when the loss Lθ is convex and subdiffer-
entiable and Θ = Rp for some p—which is the case for all problems previously studied—θ∗ can be equivalently
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characterized via the condition (S1). In this section we provide a solution that can handle problems of the form (S4)
in full generality. For concreteness, we provide an analogue of the previous nonasymptotic result, however one can
analogously derive an analogue of the asymptotic statement. We note that the solution does not reduce to the one in
Algorithms S1-S6 for convex estimation problems, and we expect the methods from Algorithms S1-S6 to be more
powerful for convex estimation problems with low-dimensional rectifiers.

We rely on the following population-level measure of fit and rectifier:

m̄θ = E[Lθ(Xi, Ŷi)]; ∆̄θ = E
[
Lθ(Xi, Yi)− Lθ(Xi, Ŷi)

]
. (1)

Notice that the rectifier (1) is always one-dimensional, while previously the rectifier was p-dimensional.

One key difference relative to the approach designed for convex problems is that we have an additional step of data
splitting. We need the additional step because, unlike in convex estimation where we know E[∇Lθ∗(Xi, Yi)] = 0, for
general problems we do not know the value of E[Lθ∗(Xi, Yi)]. To circumvent this issue, we estimate E[Lθ∗(Xi, Yi)]
by approximating θ∗ with an imputed estimate on the first N/2 unlabeled data points (for simplicity, take N to be
even). To state the main result, we define

θ̂ = argmin
θ∈Θ

2

N

N/2∑
i=1

Lθ(X
′
i, Ŷ

′
i ), LŶ

θ :=
2

N

N∑
i=N/2+1

Lθ(X
′
i, Ŷ

′
i ).

Theorem S4 (General risk minimization). Let the labeled and unlabeled data be sampled i.i.d.. Fix α ∈ (0, 1) and
δ ∈ (0, α). Suppose that, for any θ ∈ Θ, we can construct (Rl

θ(δ/2),Ru
θ (δ/2)) and

(
T l
θ

(
α−δ
2

)
, T u

θ

(
α−δ
2

))
such

that

P
(
∆̄θ ≤ Ru

θ (δ/2)
)
≥ 1− δ/2; P

(
∆̄θ ≥ Rl

θ(δ/2)
)
≥ 1− δ/2;

P

(
LŶ
θ − m̄θ ≤ T u

θ

(
α− δ

2

))
≥ 1− α− δ

2
; P

(
LŶ
θ − m̄θ ≥ T l

θ

(
α− δ

2

))
≥ 1− α− δ

2
.

Let

CPP
α =

{
θ ∈ Θ : LŶ

θ ≤ LŶ
θ̂
−Rl

θ

(
δ

2

)
+Ru

θ̂

(
δ

2

)
+ T u

θ

(
α− δ

2

)
− T l

θ̂

(
α− δ

2

)}
.

Then, we have
P
(
θ∗ ∈ CPP

α

)
≥ 1− α.

For example, if the loss Lθ(x, y) takes values in [0, B] for all x, y, then we can set Tθ(α− δ) = B
√

log(1/(α−δ))
N . The

validity of this choice follows by Hoeffding’s inequality.

Proof. Define
L̄θ = E[ℓθ(Xi, Yi)], L̄Ŷ

θ = E[Lθ(Xi, Ŷi)].

By the definition of θ∗, we have

LŶ
θ∗ = (LŶ

θ∗ − L̄θ∗) + (L̄θ∗ − L̄θ̂) + (L̄θ̂ − LŶ
θ̂
) + LŶ

θ̂

≤ (LŶ
θ∗ − L̄θ∗) + (L̄θ̂ − LŶ

θ̂
) + LŶ

θ̂
.

By applying the validity of the confidence bounds, a union bound implies that with probability 1− α we have

LŶ
θ∗ ≤ (L̄Ŷ

θ∗ − L̄θ∗) + (L̄θ̂ − L̄Ŷ
θ̂
) + LŶ

θ̂
+ T u

θ∗

(
α− δ

2

)
− T l

θ̂

(
α− δ

2

)
= −∆̄θ∗ + ∆̄θ̂ + LŶ

θ̂
+ T u

θ∗

(
α− δ

2

)
− T l

θ̂

(
α− δ

2

)
≤ −Rl

θ∗(δ/2) +Ru
θ̂
(δ/2) + LŶ

θ̂
+ T u

θ∗

(
α− δ

2

)
− T l

θ̂

(
α− δ

2

)
.

Therefore, with probability 1− α we have that θ∗ ∈ CPP
α , as desired.
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Mode estimation. A commonplace inference task that does not fall under convex estimation is the problem of
estimating the mode of the outcome distribution. When the outcome takes values in a discrete set Θ, this can
be done by using the loss function Lθ(y) = 1 {y ̸= θ} , θ ∈ Θ. A generalization of this approach to continu-
ous outcome distributions is obtained by defining the loss Lθ(y) = 1 {|y − θ| > η}, for some width parameter
η > 0. The target of inference is thus the point θ ∈ R that has the most probability mass in its η-neighborhood,
θ∗ = argminθ∈R P (|Yi − θ| > η). Theorem 4 applies directly in both the discrete and continuous cases.

Tukey’s biweight robust mean. The Tukey biweight loss function is a commonly used loss in robust statistics that
results in an outlier-robust mean estimate. It behaves approximately like a quadratic near the origin and is constant far
away from the origin. Formally, Tukey’s biweight loss function is given by

Lθ(y) =

 c2

6

(
1−

(
1− (y−θ)2

c2

)3)
, |y − θ| ≤ c,

c2

6 , otherwise,

where c is a user-specified tuning parameter. It is not hard to see that the function Lθ(y) is nonconvex and hence not
amenable to the initial analysis; however, Theorem 4 applies.

Model selection. Nonconvex risk minimization problems are ubiquitous in model selection. For example, a common
model selection strategy is best subset selection, which optimizes the squared loss, Lθ(x, y) = (y− x⊤θ)2, subject to
the constraint Θ = {θ ∈ Rd : ∥θ∥0 ≤ k}. Here, Θ is the space of all k-sparse vectors for a user-chosen parameter k.
Even though the loss function is convex, Θ is a nonconvex constraint set and hence we cannot rely on the condition
(S1) to find the minimizer. However, Theorem 4 still applies.

Inference on a Finite Population
The techniques developed in this paper directly translate to the finite-population setting. Here, we treat (X ′, Y ′) as a
fixed finite population consisting of N feature-outcome pairs, without imposing any distributional assumptions on the
data points. Analogously to the i.i.d. setting, we observe all features X ′ and a small set of outcomes. Specifically, we
assume that we observe (Y ′

i )i∈I , where I = {i1, . . . , in} is a uniformly sampled subset of [N ] of size n≪ N . In this
section we adapt all our main results to the finite-population context.

Given a loss function Lθ and parameter space Θ, the target estimand is the risk minimizer we would compute if
we could observe the whole population:

θ∗ = argmin
θ∈Θ

1

N

N∑
i=1

Lθ(X
′
i, Y

′
i ). (2)

The following results mirror the results for convex estimation. All results in this section are proved essentially identi-
cally as their i.i.d. counterparts.

In what follows, we construct prediction-powered confidence sets CPP
α assuming a valid confidence set around

the rectifier (defined below for the finite-population context). The confidence set for the rectifier can be constructed
from (X ′

i, Y
′
i )i∈I via a direct application of off-the-shelf results: in Proposition S4 we state an asymptotically valid

interval for the mean based on a finite-population version of the central limit theorem, and in Proposition S3 we state a
nonasymptotically valid interval for the mean for finite populations due to Waudby-Smith and Ramdas (32). The only
assumption required to apply the latter is that∇Lθ(X

′
i, Y

′
i )−∇Lθ(X

′
i, Ŷ

′
i ) has a known bound valid for all i ∈ [N ].

In the finite-population setting, the mild nondegeneracy condition ensured by convexity takes the form

1

N

N∑
i=1

∇Lθ∗(X ′
i, Y

′
i ) = 0, (3)

where∇Lθ is a subgradient of Lθ. The population-level rectifier is thus:

∆̄θ =
1

N

N∑
i=1

(
∇Lθ(X

′
i, Y

′
i )−∇Lθ(X

′
i, Ŷ

′
i )
)
.
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Theorem S 5 (Convex estimation, finite population). Let the labeled data be sampled uniformly at random from a
finite population. Suppose that the convex estimation problem is nondegenerate (3). Fix α ∈ (0, 1). Suppose that, for
any θ ∈ Rp, we can constructRθ(α) satisfying

P
(
∆̄θ ∈ Rθ(α)

)
≥ 1− α.

Let CPP
α =

{
θ : − 1

N

∑N
i=1∇Lθ(X

′
i, Ŷ

′
i ) ∈ Rθ(α)

}
. Then,

P (θ∗ ∈ CPP
α ) ≥ 1− α.

We apply Theorem S5 in the context of mean estimation, quantile estimation, logistic regression, and linear regres-
sion. The target estimand θ∗ is defined as in (2) with the loss function chosen appropriately. We remark that, just like
in the i.i.d. case, the analysis for linear regression follows a more refined approach, as in the proof of Corollary S3.

Corollary S14 (Mean estimation, finite population). Let θ∗ be the mean outcome. Fix α ∈ (0, 1). Suppose that, for
any θ ∈ R, we can construct an interval (Rl(α),Ru(α)) such that P

(
∆̄ ∈ (Rl(α),Ru(α))

)
≥ 1− α, where

∆̄ =
1

N

N∑
i=1

(
Ŷ ′
i − Y ′

i

)
.

Let

CPP
α =

(
1

N

N∑
i=1

Ŷ ′
i −Ru(α),

1

N

N∑
i=1

Ŷ ′
i −Rl(α)

)
.

Then,
P
(
θ∗ ∈ CPP

α

)
≥ 1− α.

Corollary S15 (Quantile estimation, finite population). Let θ∗ be the q-quantile. Fix α ∈ (0, 1). Suppose that, for
any θ ∈ R, we can construct an interval (Rl

θ(α),Ru
θ (α)) such that P

(
∆̄θ ∈ (Rl

θ(α),Ru
θ (α))

)
≥ 1− α, where

∆̄θ =
1

N

N∑
i=1

(
1 {Y ′

i ≤ θ} − 1
{
Ŷ ′
i ≤ θ

})
.

Let

CPP
α =

{
θ ∈ R :

1

N

N∑
i=1

1

{
Ŷ ′
i ≤ θ

}
∈
(
q −Ru

θ (α), q −Rl
θ(α)

)}
.

Then,
P
(
θ∗ ∈ CPP

α

)
≥ 1− α.

Corollary S16 (Linear regression, finite population). Let θ∗ be the linear regression solution. Fix α ∈ (0, 1). Suppose
that we can constructRl(α),Ru(α) ∈ Rd such that P (∆̄j ∈ (Rl

j(α),Ru
j (α)),∀j ∈ [d]) ≥ 1− α, where

∆̄ = X ′†(Ŷ ′ − Y ′).

Let
CPP
α =

(
X ′†Ŷ ′ −Ru(α), X ′†Ŷ ′ −Rl(α)

)
.

Then,
P (θ∗ ∈ CPP

α ) ≥ 1− α.

Corollary S 17 (Logistic regression, finite population). Let θ∗ be the logistic regression solution. Fix α ∈ (0, 1).
Suppose that we can constructRl(α),Ru(α) ∈ Rd such that P (∆̄j ∈ (Rl

j(α),Ru
j (α)),∀j ∈ [d]) ≥ 1− α, where

∆̄ =
1

N

N∑
i=1

X ′
i(Ŷ

′
i − Y ′

i ).
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Let

CPP
α =

{
θ ∈ Rd :

1

N

N∑
i=1

X ′
i,j

(
Ŷ ′
i −

1

1 + exp(−θ⊤X ′
i)

)
∈
(
Rl

j(α),Ru
j (α)

)
,∀j ∈ [d]

}
.

Then,
P (θ∗ ∈ CPP

α ) ≥ 1− α.

Confidence Intervals for the Mean
We give an overview of off-the-shelf confidence intervals for the mean. We state the results for two observation
models: first for the i.i.d. sampling model considered in the main body and then for the finite-population setting
discussed in the SM. In both cases, we provide a construction with nonasymptotic guarantees and one with asymptotic
guarantees.

For the nonasymptotic confidence intervals, we rely on the results of Waudby-Smith and Ramdas (32), specifically
their Theorem 3 and Theorem 4. We opt for these results because of their strong practical performance, which is
primarily driven by variance adaptivity. These results assume that the observed random variables are bounded within
a known interval. Without loss of generality we assume that the observations are bounded in [0, 1] (otherwise we can
always normalize the observations to [0, 1]).

For the asymptotic confidence intervals, we rely on the central limit theorem (CLT) and its variant for sampling
without replacement; see (37, 38) for classical references.

Inference with i.i.d. Samples

In the following two results, assume that we observe Z1, . . . , Zn
i.i.d.∼ P and let µ = E[Z1].

Proposition S1 (Nonasymptotic CI: Theorem 3 in (32)). Assume supp(P) ⊆ [0, 1]. Let

µ̂t =
0.5 +

∑t
j=1 Zj

t+ 1
, σ̂2

t =
0.25 +

∑t
j=1(Zj − µ̂t)

2

t+ 1
, λt =

√
2 log(2/α)

nσ̂2
t−1

.

For every m ∈ [0, 1], define the supermartingale:

Mt(m) =
1

2
max


t∏

j=1

(
1 + min

(
λj ,

0.5

m

)
(Zj −m)

)
,

t∏
j=1

(
1−min

(
λj ,

0.5

1−m

)
(Zj −m)

) .

Let

C =
n⋂

t=1

{m ∈ [0, 1] : Mt(m) < 1/α} .

Then,
P (µ ∈ C) ≥ 1− α.

Intuitively, the supermartingale Mt(m) should be thought of as the amount of evidence against m being the true
mean. That is, Mt(m) being big suggests that m is unlikely to be the true mean, so the final confidence set is the
collection of all m for which the amount of such evidence is small.

For large n, computing the intersection in the definition of C can be intractable, so we conservatively choose a
subsequence of 1, . . . , n for the computation.

Proposition S2 (Asymptotic CI: CLT interval). Assume P has a finite second moment. Let

C =

(
1

n

n∑
i=1

Zi ± z1−α/2
σ̂√
n

)
,

where σ̂ =
√

1
n

∑n
i=1(Zi − 1

n

∑n
j=1 Zj)2. Then,

lim inf
n→∞

P (µ ∈ C) ≥ 1− α.
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Inference on a Finite Population
In the following two results, we assume that there exists a fixed sequence Z1, . . . , ZN , and we observe {Zi : i ∈ I},
where I = {i1, . . . , in} is a uniform random subset of [N ] with cardinality n. We let µ = 1

N

∑N
i=1 Zi. For the

asymptotic result, we assume that Z1, . . . , ZN is the first N entries of an infinite underlying sequence Z1, Z2, . . . .

Proposition S3 (Nonasymptotic CI: Theorem 4 in (32)). Assume Zi ∈ [0, 1], i ∈ [N ]. Let

µ̂t =
0.5 +

∑t
j=1 Zij

t+ 1
, σ̂2

t =
0.25 +

∑t
j=1(Zij − µ̂t)

2

t+ 1
, λt =

√
2 log(2/α)

nσ̂2
t−1

.

For every m ∈ [0, 1], define the supermartingale:

Mt(m) =
1

2
max


t∏

j=1

(
1 + min

(
λj ,

0.5

µt(m)

)
(Zij − µt(m))

)
,

t∏
j=1

(
1−min

(
λj ,

0.5

1− µt(m)

)
(Zij − µt(m))

) ,

where µt(m) =
Nm−

∑t−1
j=1 Zij

N−t+1 is the putative mean. Let

C =
n⋂

t=1

{m ∈ [0, 1] : Mt(m) < 1/α} .

Then,
P (µ ∈ C) ≥ 1− α.

Proposition S4 (Asymptotic CI: CLT for sampling without replacement). Let σ2 = 1
N

∑N
i=1(Zi − µ)2, and σ̂2 =

1
n

∑
i∈I(Zi − µ̂)2. Assume that µ and σ have a limit and that n/N → p for some p ∈ (0, 1). Let

C =

(
1

n

∑
i∈I

Zi ± z1−α/2
σ̂√
n

√
N − n

N

)
.

Then,
lim inf
n,N→∞

P (µ ∈ C) ≥ 1− α.

Further Experimental Particulars
Relating Protein Structure and Post-Translational Modifications
The predictive model of whether a sequence position is in an IDR, f , is a logistic regression model that maps the
relative solvent-accessible surface area (RSA) of each position, computed based on the AlphaFold-predicted structure
using Bio.PDB (39), to a probability that the position is in an IDR. Following Bludau et al. (3), the RSA was locally
smoothed with a window of 5, 10, 15, 20, 25, 30, or 35 amino acids, and a sigmoid function was used to predict disorder
from this smoothed RSA quantity. To fit the sigmoid, we used the data in (3) that had disorder labels but no PTM
labels. The smoothing window size used for the final model was the value that resulted in the lowest variance of the
bias, Y − f , on this data.

Galaxy Classification
We fine-tune a ResNet50 (40) on the training split of the Galaxy Zoo 2 data with a batch size of 32 and a learning rate
of 0.0001 using Adam (41). We tune the entire backbone, not just the last layer. We use the remaining validation split
as our labeled and unlabeled data, taking n = [50, 100, 200, 300, 500, 750, 1000]. We use Algorithm S1 for the naive
prediction-powered approach, and Proposition S2 for the classical and imputation approaches.

24



Distribution of Gene Expression Levels
We used the transformer model developed and trained by Vaishnav et al. (11) to predict gene expression level, with
the following modification that we found improved predictive performance. Given n labeled data points, five were
randomly selected and used to train an affine (two-parameter) function mapping the scalar prediction of the transformer
in (11) to a prediction of the conditional median of the label, using quantile regression. The predictions of this final
model were used for the unlabeled dataset, and the remaining n − 5 data points that weren’t used to fine-tune the
transformer model were used as the labeled dataset. We use Algorithm S3 to form the prediction-powered confidence
intervals and the standard quantile CLT confidence interval for the classical and imputation approaches. Results
analogous to Fig. 2C in the main text for the 0.25- and 0.75-quantiles are plotted in Fig. S6.
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Figure S6: Confidence intervals on gene expression quantiles for q = 0.25 (top) and q = 0.75 (bottom). Following
Fig. 2 in the main text, the left panel shows prediction-powered (green) and classical (gray) confidence intervals
computed with five random splits of labeled and unlabeled data. The right panel shows the average interval width for
varying values of n, the number of labeled data points, as well as the width for five randomly chosen trials.

Estimating Deforestation in the Amazon
The machine-learning model given by (13) outputs forest-cover predictions at 30m resolution for 3192 data points.
We correspond these by latitude and longitude with gold-standard data points labeled as one of {deforestation,
no deforestation} from (12). In the first step, we split off half of the data to train a histogram-based gradient-
boosted tree to predict deforestation labels from the forest-cover predictions. We take a random sample of n = 100
data points as the gold-standard data, and try to cover the true fraction of deforestation events on the N = 1596
remaining data points. We use Algorithm S1 to produce the prediction-powered confidence interval and Proposition
S2 for the classical and imputation approaches.

Relationship Between Income and Private Health Insurance
We train a gradient-boosted tree (15) on the California Census data from 2018 acquired using the Folktables (14) inter-
face. The boosted tree takes as input several covariates such as income, race, and sex, to predict whether an individual
has private health insurance coverage. In the new year, 2019, we use n = [200, 300, 500, 1000, 2000, 5000, 10000]
labeled data points. We use Algorithm S5 to produce the prediction-powered confidence interval and the standard CLT
confidence interval for the classical and imputation approaches.
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Relationship Between Age and Income
The setting is the same as the above experiment on income and private health insurance, the main difference being
that income is used as the target, and not as a covariate. We used Algorithm S4 to produce the prediction-powered
confidence interval and the standard CLT confidence interval for the classical and imputation approaches.

Counting Plankton
We fine-tune a ResNet152 (40) on the WHOI-Plankton dataset (17) in the years 2006-2013 for two epochs with a
batch size of 32 and a learning rate of 0.0001 using AdamW (42), with 5% of the data saved for validation. We tune
the entire backbone, not just the last layer. Then we test in the year 2014, using all available data. We use Theorem S3
to produce the prediction-powered intervals and Proposition S2 for the imputation approach.

Related Work
This section expands the discussion of related work from the main body of the paper. Thematically, prediction-powered
inference is most similar to the work of Wang et al. (18), who also introduce a method to correct machine-learning
predictions for the purpose of subsequent inference. However, prediction-powered inference provides provably valid
conclusions under minimal assumptions about the data-generating distribution, whereas the procedure of Wang et al.
does not provide coverage in general and requires strong assumptions about the relationship between the prediction
model and the true response. We compare against this baseline in “Comparison to Baseline Procedures” in the SM.

The technical results of this paper generalize tools from the model-assisted survey sampling literature (43), which
provides methods to improve inference from surveys in the presence of auxiliary information. In particular, the
prediction-powered mean estimator is the difference estimator, closely related to generalized regression estimators
(44). It has long been recognized that model predictions can be leveraged as auxiliary data (45), and much work has
gone into producing asymptotically valid confidence intervals when the predictive model is fit on the same data that
is used for inference—see (46) for a recent overview. Prediction-powered inference is also related to the statistical
literature on semiparametric inference, missing data, and multiple imputation (47). In particular, (48-51) study regres-
sion with missing data. The rectifier resembles debiasing strategies that are pervasive in this literature, an example
being the AIPW estimator (49). Likewise, prediction-powered inference is related to measurement error (e.g., 52, 53).
Prediction-powered inference aims to provide simple, broadly applicable algorithms using similar debiasing tricks,
while allowing the use of state-of-the-art black-box machine-learning systems.

There has been an increasing a body of work on estimation with many unlabeled data points and few labeled data
points (19-22), focusing on efficiency in semiparametric or high-dimensional regimes. In particular, Chakrabortty and
Cai (23), Deng et al. (25), and Azriel et al. (26) study efficient estimation of linear regression parameters, Chakrabortty
et al. (27) study efficient quantile estimation, and Zhang and Bradic (24) study mean estimation in a high-dimensional
setting. Finally, Song et al. (55) study M-estimation, using a projection-based correction to the classical M-estimator
loss based on simple statistics (e.g. low-order polynomials) of the features. Prediction-powered inference continues
in this vein but focuses on the setting where the scientist has access to a good predictive model fit on separate data
and makes no assumptions about the model (such as consistency). The confidence intervals and resulting p-values
from previous work rely on asymptotic approximations, while prediction-powered inference has both asymptotic and
nonasymptotic variants. Furthermore, prediction-powered inference goes beyond random sampling and considers
certain forms of distribution shift.

More distantly, the setting of prediction-powered inference, in which the scientist has access to some labeled data
alongside unlabeled data, also appears in semi-supervised learning (54)—this literature studies the question of how
to improve prediction accuracy with unlabeled data. Even further along is the literature on transfer learning, wherein
estimation rates improve with access to out-of-distribution data; a similar debiasing technique also appears there (56).

Prediction-powered inference is conceptually related to conformal prediction (28). Both methodologies leverage
a predictive model and a labeled dataset. From this point on, the two methods diverge: prediction-powered inference
has additional unlabeled data and gives a confidence set that contains a population-level quantity such as the mean
outcome; conformal prediction gives a confidence set for a test instance that contains the true label. These are two
distinct goals, and neither method can be applied straightforwardly to solve the objective of the other.
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