avg.surv <- function(cfit, var.name, var.values, data, weights)
{
if(missing(data)) {
if(!is.null(cfit$model))
mframe <- cfit$model
else mframe <- model.frame(cfit, sys.parent())
}
else mframe <- model.frame(cfit, data)
var.num <- match(var.name, names(mframe))
data.patterns <- apply(data.matrix(mframe[, - c(1, var.num)]), 1,
paste, collapse = ",")
data.patterns <- factor(data.patterns, levels=unique(data.patterns))
mframe <- mframe[!duplicated(data.patterns), ]
if(missing(weights))
weights <- table(data.patterns)
else weights <- tapply(weights, data.patterns, sum)
curves <- vector(length = length(var.values), mode = "list")
names(curves) <- var.values
for(value in var.values) {
mframe[, var.name] <- value
fits <- survfit.coxph(cfit, newdata = mframe, se.fit = F)
curves[[as.character(value)]] <- (fits[[4]] %*% weights)/sum(
weights)
}
curve.mat <- matrix(unlist(curves), ncol = length(curves), dimnames =
list(NULL, names(curves)))
fits$surv <- curve.mat
fits
}