
Syllabus for DSCI 100 - Introduction to Data Science 

Time 
Section	 Instructor	
DSCI	100	-	002	 Daniel	Chen	
DSCI	100	-	003	 Melissa	Lee	

DSCI	100	100	has	it’s	own	repository	this	semester.	Please	refer	to	
https://github.com/eldadHaber/DSCI100	

Course Description 

Use	of	data	science	tools	to	summarize,	visualize,	and	analyze	data.	Sensible	workflows	and	
clear	interpretations	are	emphasized.	

Long	Version:	In	recent	years,	virtually	all	areas	of	inquiry	have	seen	an	uptake	in	the	use	
of	data	science	tools.	Skills	in	the	areas	of	assembling,	analyzing,	and	interpreting	data	are	
more	critical	than	ever.	This	course	is	designed	as	a	first	experience	in	honing	such	skills.	
Students	who	have	completed	this	course	will	be	able	to	implement	a	data	science	
workflow	using	either	the	R	or	Python	programming	language,	by	“scraping”	
(downloading)	data	from	the	internet,	“wrangling”	(managing)	the	data	intelligently,	and	
creating	tables	and/or	figures	that	convey	a	justifiable	story	based	on	the	data.	They	will	be	
adept	at	using	tools	for	finding	patterns	in	data	and	making	predictions	about	future	data.	
There	will	be	an	emphasis	on	intelligent	and	reproducible	workflow,	and	clear	
communications	of	findings.	No	previous	programming	skills	necessary;	beginners	are	
welcome!	

Textbook 

This	course	uses	“Data	Science:	A	First	Introduction”	which	is	available	both	in	an	R-
version	and	a	Python-version.	This	textbook	is	open	source	and	will	always	be	freely	
available	on	the	web.	

Hardware & Software 

Students	are	required	to	bring	a	laptop,	chromebook	or	tablet	to	both	lectures	and	
tutorials.	Students	who	do	not	own	a	laptop,	chromebook,	or	tablet	may	be	able	to	loan	a	
laptop	from	the	UBC	library.	

All	other	required	software	will	be	provided	by	the	instructors.	Students	will	learn	to	
perform	their	analysis	using	the	R	or	Python	programming	language	depending	on	which	
section	they	enrolled	in.	Worksheets	and	tutorial	problem	sets	as	well	as	the	final	project	
analysis,	development,	and	reports	will	be	done	using	Jupyter	Notebooks	accessed	via	
Canvas.	

https://github.com/eldadHaber/DSCI100
https://datasciencebook.ca/
https://datasciencebook.ca/
https://python.datasciencebook.ca/
https://services.library.ubc.ca/computers-technology/technology-borrowing/
https://services.library.ubc.ca/computers-technology/technology-borrowing/
https://cran.r-project.org/
https://www.python.org/
http://jupyter.org/
https://canvas.ubc.ca/


Prerequisite Knowledge 
• distance	between	points	on	a	graph	
• percentages,	average	
• powers,	roots,	basic	operations,	logarithm,	exponential	
• equation	of	a	line	/	plane	

As	an	example,	British	Columbia’s	Math	12	or	Pre-Calculus	12	courses	would	satisfy	the	
prerequisite.	

Learning Outcomes 

By	the	end	of	the	course,	students	will	be	able	to:	

• Read	data	using	computation	from	various	sources	(local	and	remote	plain	text	files,	
spreadsheets	and	databases)	

• Wrangle	data	from	their	original	format	into	a	fit-for-purpose	format.	
• Identify	the	most	common	types	of	research/statistical	questions	and	map	them	to	

the	appropriate	type	of	data	analysis.	
• Create,	and	interpret,	meaningful	tables	from	wrangled	data.	
• Create,	and	interpret,	impactful	figures	from	wrangled	data.	
• Collaborate	with	others	using	version	control.	
• Apply,	and	interpret	the	output	of	simple	classifier	and	regression	models.	
• Make	and	evaluate	predictions	using	a	simple	classifier	and	a	regression	model.	
• Apply,	and	interpret	the	output	of,	a	simple	clustering	algorithm.	
• Distinguish	between	in-sample	prediction,	out-of-sample	prediction,	and	cross-

validation.	
• Calculate	a	point	estimate	in	the	context	of	statistical	inference	and	explain	how	that	

relates	to	the	population	quantity	being	estimated.	
• Accomplish	all	of	the	above	using	workflows	and	communication	strategies	that	are	

sensible,	clear,	reproducible,	and	shareable.	

Teaching Team 

Note	that	your	TAs	are	students	too;	they	may	have	class	right	before	their	office	hours,	and	
they	may	run	a	few	minutes	late.	Please	be	patient!	

Section	 Position	 Name	 Email	
All	 Course	coordinator	 Julia	Peng	 courses[-at-]stat.ubc.ca	
002	 Instructor	 Daniel	Chen	 daniel.chen[-at-]stat.ubc.ca	
003	 Instructor	 Melissa	Lee	 melissa.lee[-at-]stat.ubc.ca	

Please	contact	the	course	coordinator	about	any	administrative	questions.	Please	
read	the	course	policy	(e.g.,	late	registration,	missing	exam/assignment	due	to	
sickness)	below	before	contacting.	



When	sending	emails,	please	include	your	student	number	and	DSCI	100	[Section	Number]	
in	the	subject	line.	

Assessments 

The	course	will	have	exams,	worksheets,	tutorials,	iClicker	questions	and	a	project	for	
assessments.	

Exams 
• One	midterm	covering	~3	weeks	of	material	

– Same	time	&	location	as	week	4	tutorials.	Invigilated	in-person.	
• One	cumulative	final	covering	all	the	material	in	the	course	

– To	be	scheduled	by	Classroom	Services.	Invigilated	in-person.	

The	midterm	and	final	are	both	closed	book	exams,	where	you	will	only	have	access	to	a	
reference	sheet	for	common	functions	and	operations.	We	suggest	that	already	now	get	
familiar	with	the	reference	sheet	relevant	to	your	section	(Python	version	or	R	version)	to	
use	it	more	efficiently	at	the	exam.	

Note:	Since	DSCI	100	is	a	large	course	with	multiple	sections	(hence,	multiple	versions	of	
exams),	the	instructors	reserve	the	rights	to	scale	grades	in	order	to	maintain	equity	among	
sections	according	the	UBC	campus	wide	policies	and	regulations.	

Worksheets and Tutorials 

In	each	class	(lecture	and	tutorial)	there	will	be	an	assignment:	

• Lecture	and	tutorial	worksheet	due	dates	are	posted	on	Canvas.	
• To	open	the	assignment,	click	the	link	(e.g.	worksheet_intro)	from	Canvas.	
• To	submit	your	assignment,	just	make	sure	your	work	is	saved	on	our	server	(File 

-> Save Notebook	to	be	sure).	
• At	the	deadline,	our	server	will	automatically	snapshot	your	work.	
• You	must	access	the	lecture	and	tutorial	worksheets	through	our	Canvas	

course	page	(as	opposed	to	the	worksheets	publicly	available	via	Github).	
Otherwise	your	worksheets	may	not	be	marked!	

iClicker 

During	each	lecture	there	will	be	iClicker	questions	to	help	check	your	understanding	of	the	
course	material.	iClicker	grade	will	be	based	on	participation.	You	must	attend	the	section	
you	are	registered	in.	It	is	your	responsibility	to	make	sure	that	the	student	ID	and	name	
associated	with	your	iClicker	account	matches	the	Canvas	gradebook.	If	you	need	help	
connecting	to	iClicker	please	see	iClicker	Cloud	Student	Guide.	

Project 

The	project	will	provide	additional	practice	with	the	data	science	skills	we	teach	in	the	
class.	It	is	an	extension	to	the	worksheets	and	tutorials	by	providing	little	to	no	prompts	

REFERENCE_PYTHON.md
REFERENCE_R.md
https://www.calendar.ubc.ca/Vancouver/index.cfm?tree=3,42,96,0
https://lthub.ubc.ca/guides/iclicker-cloud-student-guide/


and	scaffolding	code.	You	will	only	be	able	to	use	the	dataset(s)	we	have	provided	you	to	
use	in	Canvas.	Further	details	regarding	the	project	will	be	announced	during	the	term.	

Course breakdown 
Deliverable	 Percent	Grade	
Worksheets	 6	
Tutorials	 7	
iClicker	 3	
Project	 3	
Midterm	 30	
Final	 50	
Bonus	regrade	percent	 1	

DSCI	100	100	has	it’s	own	repository	this	semester.	Please	refer	to	it’s	syllabus	and	materials	
at	https://github.com/eldadHaber/DSCI100	

Schedule 
Session	 Topic	 Description	
1	 Introduction	 Learn	to	use	a	programming	language	and	Jupyter	

notebooks	as	you	walk	through	a	real	world	data	Science	
application	that	includes	downloading	data	from	the	web,	
wrangling	the	data	into	a	useable	format	and	creating	an	
effective	data	visualization.	

1	 Reading	in	data	
locally	and	from	
the	web	

Learn	to	read	in	various	cases	of	data	sets	locally	and	from	
the	web.	Once	read	in,	these	data	sets	will	be	used	to	walk	
through	a	real	world	data	Science	application	that	includes	
wrangling	the	data	into	a	useable	format	and	creating	an	
effective	data	visualization.	

2	 Cleaning	and	
wrangling	data	

This	week	will	be	centered	around	tools	for	cleaning	and	
wrangling	data.	Again,	this	will	be	in	the	context	of	a	real	
world	data	science	application	and	we	will	continue	to	
practice	working	through	a	whole	case	study	that	includes	
downloading	data	from	the	web,	wrangling	the	data	into	a	
useable	format	and	creating	an	effective	data	visualization.	

2	 Effective	data	
visualization	

Expand	your	data	visualization	knowledge	and	tool	set	
beyond	what	we	have	seen	and	practiced	so	far.	We	will	
move	beyond	scatter	plots	and	learn	other	effective	ways	to	
visualize	data,	as	well	as	some	general	rules	of	thumb	to	
follow	when	creating	visualations.	All	visualization	tasks	this	
week	will	be	applied	to	real	world	data	sets.	Again,	this	will	
be	in	the	context	of	a	real	world	data	science	application	and	
we	will	continue	to	practice	working	through	a	whole	case	
study	that	includes	downloading	data	from	the	web,	

https://github.com/eldadHaber/DSCI100


wrangling	the	data	into	a	useable	format	and	creating	an	
effective	data	visualization.	

3	 Version	control	 This	chapter	will	introduce	the	concept	of	using	version	
control	systems	to	track	changes	to	a	project	over	its	
lifespan,	to	share	and	edit	code	in	a	collaborative	team,	and	
to	distribute	the	finished	project	to	its	intended	audience.	
This	chapter	will	also	introduce	how	to	use	the	two	most	
common	version	control	tools:	Git	for	local	version	control,	
and	GitHub	for	remote	version	control.	We	will	focus	on	the	
most	common	version	control	operations	used	day-to-day	in	
a	standard	data	science	project.	There	are	many	user	
interfaces	for	Git;	in	this	chapter	we	will	cover	the	Jupyter	
Git	interface.	

3	 Classification	 This	chapter	and	the	next	together	serve	as	our	first	foray	
into	answering	predictive	questions	about	data.	In	
particular,	we	will	focus	on	classification,	i.e.,	using	one	or	
more	variables	to	predict	the	value	of	a	categorical	variable	
of	interest.	This	chapter	will	cover	the	basics	of	
classification,	how	to	preprocess	data	to	make	it	suitable	for	
use	in	a	classifier,	and	how	to	use	our	observed	data	to	make	
predictions.	The	next	chapter	will	focus	on	how	to	evaluate	
how	accurate	the	predictions	from	our	classifier	are,	as	well	
as	how	to	improve	our	classifier	(where	possible)	to	
maximize	its	accuracy.	

4	 Midterm	 	

4	 Classification,	
continued	

This	chapter	continues	the	introduction	to	predictive	
modeling	through	classification.	While	the	previous	chapter	
covered	training	and	data	preprocessing,	this	chapter	
focuses	on	how	to	evaluate	the	performance	of	a	classifier,	
as	well	as	how	to	improve	the	classifier	(where	possible)	to	
maximize	its	accuracy.	

4	 Regression	 This	chapter	continues	our	foray	into	answering	predictive	
questions.	Here	we	will	focus	on	predicting	numerical	
variables	and	will	use	regression	to	perform	this	task.	This	is	
unlike	the	past	two	chapters,	which	focused	on	predicting	
categorical	variables	via	classification.	However,	regression	
does	have	many	similarities	to	classification:	for	example,	
just	as	in	the	case	of	classification,	we	will	split	our	data	into	
training,	validation,	and	test	sets,	we	will	use	scikit-learn	
workflows,	we	will	use	a	K-nearest	neighbors	(KNN)	
approach	to	make	predictions,	and	we	will	use	cross-
validation	to	choose	K.	We	will	focus	on	prediction	in	cases	
where	there	is	a	response	variable	of	interest	and	a	single	
explanatory	variable.	



5	 Regression,	
continued	

Up	to	this	point,	we	have	solved	all	of	our	predictive	
problems—both	classification	and	regression—using	K-
nearest	neighbors	(KNN)-based	approaches.	In	the	context	
of	regression,	there	is	another	commonly	used	method	
known	as	linear	regression.	This	chapter	provides	an	
introduction	to	the	basic	concept	of	linear	regression,	shows	
how	to	use	scikit-learn	to	perform	linear	regression	in	
Python,	and	characterizes	its	strengths	and	weaknesses	
compared	to	KNN	regression.	The	focus	is,	as	usual,	on	the	
case	where	there	is	a	single	predictor	and	single	response	
variable	of	interest;	but	the	chapter	concludes	with	an	
example	using	multivariable	linear	regression	when	there	is	
more	than	one	predictor.	

5	 Clustering	 As	part	of	exploratory	data	analysis,	it	is	often	helpful	to	see	
if	there	are	meaningful	subgroups	(or	clusters)	in	the	data.	
This	grouping	can	be	used	for	many	purposes,	such	as	
generating	new	questions	or	improving	predictive	analyses.	
This	chapter	provides	an	introduction	to	clustering	using	the	
K-means	algorithm,	including	techniques	to	choose	the	
number	of	clusters.	

6	 Introduction	to	
statistical	
inference	

A	typical	data	analysis	task	in	practice	is	to	draw	conclusions	
about	some	unknown	aspect	of	a	population	of	interest	
based	on	observed	data	sampled	from	that	population;	we	
typically	do	not	get	data	on	the	entire	population.	Data	
analysis	questions	regarding	how	summaries,	patterns,	
trends,	or	relationships	in	a	data	set	extend	to	the	wider	
population	are	called	inferential	questions.	This	chapter	will	
start	with	the	fundamental	ideas	of	sampling	from	
populations	and	then	introduce	two	common	techniques	in	
statistical	inference:	point	estimation	and	interval	
estimation.	

6	 Introduction	to	
statistical	
inference,	
continued	

Unfortunately,	we	cannot	construct	the	exact	sampling	
distribution	without	full	access	to	the	population.	However,	
if	we	could	somehow	approximate	what	the	sampling	
distribution	would	look	like	for	a	sample,	we	could	use	that	
approximation	to	then	report	how	uncertain	our	sample	
point	estimate	is	(as	we	did	above	with	the	exact	sampling	
distribution).	There	are	several	methods	to	accomplish	this;	
in	this	course,	we	will	use	the	bootstrap.	We	will	discuss	
interval	estimation	and	construct	confidence	intervals	using	
just	a	single	sample	from	a	population.	A	confidence	interval	
is	a	range	of	plausible	values	for	our	population	parameter.	

6	 Project	report	due	 	

7	 Final	 Cumulative.	Covers	all	the	material.	To	be	Scheduled	by	



Classroom	Services	

Policies 

Code of Conduct 

All	participants	in	our	course	and	communications	are	expected	to	show	respect	and	
courtesy	to	others.	To	creating	a	friendly	and	respectful	place	for	learning,	teaching	and	
contributing,	you	are	expected	to	read	and	follow	the	DSCI	100	Code	of	Conduct.	

Late Registration 

Students	who	register	for	the	class	late	have	1	week	from	their	registration	date	on	Canvas	
to	complete	all	prior	assignments.	

Late Assignments / Absences 

For	examinations,	students	must	be	present	at	the	invigilation	venue	(in	class,	
examination	centre,	etc)	to	take	exams;	otherwise	they	will	be	considered	to	have	missed	
the	exam	and	will	be	assigned	a	grade	of	zero.	

Students	who	will	miss	an	exam	must	provide	a	self-declaration	of	academic	
concession	prior	to	the	exam	(see	Canvas	homepage	for	the	academic	concession	form)	
and	make	arrangements	with	the	Instructor.	Failing	to	present	a	declaration	within	a	
reasonable	timeframe	before	the	exam	will	result	in	a	grade	of	zero.	

There	will	be	no	extensions	for	the	lecture	and	tutorial	worksheets;	late	assignments	
will	receive	a	grade	of	zero.	Instead,	we	will	drop	the	lowest	2	grades	on	tutorials	and	
worksheets	for	the	semester	(1	lowest	tutorial	+	1	lowest	worksheet).	This	policy	is	meant	
to	cover	illness/unexpectancies.	The	worksheet	and	tutorial	that	you	were	not	able	to	
complete	before	the	deadline	will	be	covered	by	this	policy.	However,	if	you	have	
extenuating	circumstances	and	require	further	accommodations	for	subsequent	requests,	
please	contact	the	course	coordinator	with	supporting	documents,	and	we	will	deal	with	
them	case	by	case.	

Students	who	miss	a	lecture	for	their	registered	section	will	receive	a	iClicker	grade	of	0	for	
that	lecture.	There	will	be	no	make	ups	or	accomodations	for	missing	i-clickers.	Instead,	we	
will	drop	the	1	lowest	grade	on	iClicker	lectures	to	accomodate	late	registration	and/or	
unforseeable	events.	

For	all	other	assignments	and	the	course	project,	a	late	submission	will	receive	a	50%	
penalty.	

Autograder Policy 

Many	of	the	questions	in	assignments	are	graded	automatically	by	software.	The	grading	
computer	has	exactly	the	same	hardware	setup	as	the	server	that	students	work	on.	No	
assignment,	when	completed,	should	take	longer	than	5	minutes	to	run	on	the	server.	The	

CODE_OF_CONDUCT.md


autograder	will	automatically	stop	(time	out)	for	each	student	assignment	after	a	maximum	
of	5	minutes;	any	ungraded	questions	at	that	point	will	receive	a	score	of	0.	

Students	are	responsible	for	making	sure	their	assignments	are	reproducible,	and	run	from	
beginning	to	end	on	the	autograding	computer.	In	particular,	please	ensure	that	any	data	
that	needs	to	be	downloaded	is	done	so	by	the	assignment	notebook	with	the	correct	
filename	to	the	correct	folder.	A	common	mistake	is	to	manually	download	data	when	
working	on	the	assignment,	making	the	autograder	unable	to	find	the	data	and	often	
resulting	in	an	assignment	grade	of	0.	

In	short:	whatever	grade	the	autograder	returns	after	5	minutes	(assuming	the	teaching	
team	did	not	make	an	error)	is	the	grade	that	will	be	assigned.	

Re-grading 

To	account	for	minor	grading	errors	throughout	the	course,	every	student	will	get	a	bonus	
of	one	percentage	point	at	the	end	of	the	semester.	We	only	accept	tutorial	regrade	
requests	for	major	errors	in	grading.	If	you	think	the	grading	team	made	an	error	of	more	
than	25%	on	a	single	assignment,	you	may	fill	out	a	tutorial	regrade	form	at	the	end	of	the	
semester	(regrade	form	will	be	released	near	the	end).	

Device/Browser 

Students	are	responsible	for	using	a	device	and	browser	compatible	with	all	functionality	
of	Canvas.	Chrome	or	Firefox	browsers	are	recommended;	Safari	has	had	issues	with	
Canvas	exams	in	the	past.	

Missed Final Exam 

Students	who	miss	the	final	exam	must	report	to	their	faculty	advising	office	within	72	
hours	of	the	missed	exam,	and	must	supply	supporting	documentation.	Only	your	faculty	
advising	office	can	grant	deferred	standing	in	a	course.	You	must	also	notify	your	instructor	
prior	to	(if	possible)	or	immediately	after	the	exam.	Your	instructor	will	let	you	know	when	
you	are	expected	to	write	your	deferred	exam.	Deferred	exams	will	ONLY	be	provided	to	
students	who	have	applied	for	and	received	deferred	standing	from	their	faculty.	

Academic Concession Policy 

Please	see	UBC’s	concession	policy	for	detailed	information	on	dealing	with	missed	
coursework	and	exams	under	circumstances	of	an	acute	and	unanticipated	nature.	

See	our	Canvas	homepage	for	the	academic	concession	form.	

Academic Integrity 

The	academic	enterprise	is	founded	on	honesty,	civility,	and	integrity.	As	members	of	this	
enterprise,	all	students	are	expected	to	know,	understand,	and	follow	the	codes	of	conduct	
regarding	academic	integrity.	At	the	most	basic	level,	this	means	submitting	only	original	
work	done	by	you	and	acknowledging	all	sources	of	information	or	ideas	and	attributing	
them	to	others	as	required.	This	also	means	you	should	not	cheat,	copy,	or	mislead	others	

http://www.calendar.ubc.ca/vancouver/index.cfm?tree=3,329,0,0


about	what	is	your	work.	Violations	of	academic	integrity	(i.e.,	misconduct)	lead	to	the	
breakdown	of	the	academic	enterprise,	and	therefore	serious	consequences	arise	and	
harsh	sanctions	are	imposed.	For	example,	incidences	of	plagiarism	or	cheating	may	result	
in	a	mark	of	zero	on	the	assignment	or	exam	and	more	serious	consequences	may	apply	if	
the	matter	is	referred	to	the	President’s	Advisory	Committee	on	Student	Discipline.	Careful	
records	are	kept	in	order	to	monitor	and	prevent	recurrences.	

A	more	detailed	description	of	academic	integrity,	including	the	University’s	policies	and	
procedures,	may	be	found	in	the	Academic	Calendar	at	
http://calendar.ubc.ca/vancouver/index.cfm?tree=3,54,111,0.	

Plagiarism 

Students	must	correctly	cite	any	code	or	text	that	has	been	authored	by	someone	else	or	by	
the	student	themselves	for	other	assignments.	Cases	of	plagiarism	may	include,	but	are	not	
limited	to:	

• the	reproduction	(copying	and	pasting)	of	code	or	text	with	none	or	minimal	
reformatting	(e.g.,	changing	the	name	of	the	variables)	

• the	translation	of	an	algorithm	or	a	script	from	a	language	to	another	
• the	generation	of	code	and/or	text	by	automatic	code-generation	software	or	large	

language	model	

An	“adequate	acknowledgement”	requires	a	detailed	identification	of	the	(parts	of	the)	
code	or	text	reused	and	a	full	citation	of	the	original	source	code	that	has	been	reused.	

The	above	attribution	policy	applies	only	to	assignments.	No	code	or	text	may	be	copied	
(with	or	without	attribution)	from	any	source	during	an	exam.	Answers	must	always	
be	in	your	own	words.	At	a	minimum,	copying	will	result	in	a	grade	of	0	for	the	
related	assignment.	

Repeated	plagiarism	of	any	form	could	result	in	larger	penalties,	including	failure	of	
the	course.	

Resources 

For	additional	information,	please	check	out	these	useful	student	resources,	the	survival	
tips	from	your	TAs,	and	the	Frequently	Asked	Questions.	If	you	want	to	use	any	of	this	
material	elsewhere,	please	read	the	license.	

Attribution 

Parts	of	this	syllabus	(particularly	the	policies)	have	been	copied	and	derived	from	the	UBC	
MDS	Policies.	

http://calendar.ubc.ca/vancouver/index.cfm?tree=3,54,111,0
RESOURCES.md
TIPS.md
TIPS.md
FAQ.md
LICENSE.md
https://ubc-mds.github.io/policies/
https://ubc-mds.github.io/policies/

