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Abstract

This report shows how a Bayesian hierarchical approach we call Bayesian
spatial prediction (BSP), originally developed for spatial prediction, can be
used to temporally predict (i.e. forecast) a future multivariate response vector
at a site which monitors a space–time field. The theory needed for that
approach, which uses available past data from all such sites, is presented and
demonstrated by application to Chicago AQS ozone fields. Moreover it is
compared with two other approaches: dynamic linear modeling, a common,
state–space approach to forecasting; NAIVE, a naive approach that relies only
on common weekly and hourly effects. Overall the results shows BSP to be
the best of these approaches for the data considered.

Keywords: Dynamic linear model, hierarchical Bayes, ozone, space–time fields,
Bayesian spatial prediction after pre–filtering.

1 Introduction

This report shows how a Bayesian hierarchical approach we call Bayesian spatial
prediction (BSP), originally developed for spatial prediction, can be used to tem-
porally predict (i.e. forecast) a future multivariate response vector at a site which
monitors a space–time field. The theory needed for that approach, which uses avail-
able past data from all such sites, is presented and demonstrated by application to
Chicago AQS ozone fields.

∗The research reported in this paper was partially supported by a grant from the Natural
Sciences and Engineering Research Council of Canada.
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Concerns about ozone go back at least 100 years since Dr. Henry Antoine Des
Voeux mentioned smog, of which ozone is a constituent, in a paper, “Fog and
Smoke”, that he presented in 1905. However much added impetuous came from the
US Air Clean Act of 1970 that led to the designation of six primary air pollutants
(carbon monoxide, lead, nitrogen dioxide, ozone, particulate matter and sulfur diox-
ide) as criteria pollutants subject to regulation. These are the pollutants deemed to
be risks to human health (for which primary standards are set) and human welfare
(secondary standards).

US EPA (Environmental Protection Agency) monitors ground–level ozone over
the entire US. The monitoring stations are irregularly distributed over the country
and provide in particular hourly measurements of ground–level ozone concentrations,
the focus of this report. More specifically it concerns one day ahead forecasts of
those concentrations based on current day (and previous) concentrations, forecasts
that are commonly provided nowadays in urban areas to alert individuals in groups
susceptible to adverse health outcomes. In fact, the forecaster may need to answer
questions such as: “What will the ozone concentration level be at 2 p.m. tomorrow
given all data until 10 a.m. today?”; or, “What will the ozone levels be tomorrow if
I have all the measurements up to today?”

To model the space–time fields we use the Bayesian spatial prediction after pre–
filtering (BSP) approach, also called the Bayesian hierarchical kriging method (Le
and Zidek 1992, 2006; Brown et al. 1994; Le et al. 1997; Zidek et al. 2002). The
multivariate BSP approach can be adapted to answer questions like those above, by
creating a 24–dimensional multivariate response variable with the daily 24 hourly
univariate responses, treated formally as if they were 24 “species” or “pollutants”;
each entry therein represents one measurement for each of the successive 24 hours.
The multivariate model exploits the strong dependence in the sequence of hourly re-
sponses and allows the as yet unobserved, say 24th hour response to borrow strength
from its predecessors. To meet the BSP’s assumption of independence, we use two
subsequences of the 24–dimensional response vectors. More precisely we create two
subdata matrices using the 24–dimensional vectors, the first from the odd days
and a second, the even days. Each subdata matrix is then amenable to applica-
tion of available software for the BSP (EnviRo.stat.ubc.ca; Dou et al. 2007, 2008).
The resulting odd–even pairs of hyperparameter estimates from the software can be
averaged to form “estimates” of hyperparameters based on all the data. Finally,
one–day–ahead forecasts at gauged sites given those estimates of hyperparameters
and observed responses, can be obtained, with say 95% forecast intervals, from the
posterior distribution. However alternative methods for constructing those forecasts
are available.

In fact, Section 2 presents three methodologies to forecast future responses at
gauged sites: the multivariate BSP, DLM and NAIVE. Section 2.1 shows how to
construct the above odd–day and even–day sequences and the corresponding subdata
matrices along with the multivariate settings of the BSP model to predict each one
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of the 24 responses next day. Moreover, their predictive posterior distributions
are developed and the corresponding pointwise predictive intervals at each gauged
site, constructed. Section 2.2 extends the results in Section 2.1 to predict r–step–
ahead responses for any r ∈ N . Section 2.3 illustrates the r–step–ahead prediction
by the DLM approach. Section 2.4 presents the r–step–ahead temporal prediction
by NAIVE approach. Section 3 implements the multivariate BSP forecaster for the
Chicago AQS ozone database (2000). Section 4 presents the results and comparisons
of the one–day–ahead prediction by the three approaches at gauged sites. Section
5 summarizes the success of the newly developed temporal prediction by the BSP
and potential problems of this method.

2 Methodology

This section introduces the multivariate BSP, DLM and NAIVE approaches to fore-
casting future responses. We start from the one–day–ahead prediction using the BSP
in Section 2.1, and then extends those results to r–step–ahead (r ∈ N ) prediction
in the following subsection. Section 2.3 describes the DLM method for forecasting.
Moreover, Section 2.4 illustrates the NAIVE approach and compares its forecasts
with those from the BSP and DLM approaches.

2.1 One–day–ahead prediction with the BSP

Suppose Y
[gm

j ]

t,i represents the unobserved ith response variable at time point t, mon-

itoring (“gauged”) site j, and Y
[go

j ]

t,i , the observed response variable, for t = 1, . . . , n,
i = 1, . . . , p, and j = 1, . . . , g. We have 121 days of hourly observed ozone over 14
gauged sites. To assess the BSP forecast, we set aside the observations for the last
day, Day 121. We then predict the ozone concentration levels on that day at gauged
sites, given the hourly observations from day 1 to day 120. To exploit the depen-
dence among the hourly responses, we use a multivariate model with each day’s
hourly ozone concentrations in a single 24 dimensional response vector. Hence, we
have n = 120 days, p = 24 responses and g = 14 gauged sites. For our demonstra-
tion, we make forecasts in two arbitrarily selected cases, (i) 11 P.M. and (ii) any
single hour during the period from 0 A.M. to 10 P.M. on Day 121.

• Case 1: Predict the concentration during the last hour (i.e., 11 P.M.)
of the 121st day.

Call the corresponding multivariate BSP model “Model–1”. One of the sub-
data matrices, i.e., “odd–day–response”, can be formed by {U(1)

t : 1×gp, t =

1, . . . , 60}, where U
(1)
t = (Y

[go
1 ]

2t−1,1, . . . , Y
[go

g ]

2t−1,p); the other, “even–day–response”,

by {V(1)
t : 1 × gp, t = 1, . . . , 59}, where V

(1)
t = (Y

[go
1 ]

2t,1 , . . . , Y
[go

g ]

2t,p ). In other
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words, the observed response variables from the 1st day to the 119th day are
used as the “data”. After that, each of the subdata matrices is used with
Model–1 to find estimates of the hyperparameters. Moreover, “approximate”
estimates of the hyperparameters given all the observed response variables
at gauged sites are obtained by averaging each pair of the hyperparameters
estimated by the BSP using these two matrices respectively.

• Case 2: Predict the response variable at the (k−1)th hour of the 121st

day, for k = 2, . . . , p.

Call the corresponding multivariate BSP model “Model–k”. One of the sub-
data matrices can be formed by {U(k)

t : 1× gp, t = 1, . . . , 59}, where U
(k)
t =

(Y
[go

1 ]
2t−1,k, . . . , Y

[go
1 ]

2t−1,p, Y
[go

1 ]
2t,1 , . . . , Y

[go
1 ]

2t,k−1, . . . , Y
[go

g ]

2t−1,k, . . . , Y
[go

g ]

2t−1,p, Y
[go

g ]

2t,1 , . . . , Y
[go

g ]

2t,k−1);

the other by {V(k)
t : 1× gp : t = 1, . . . , 59}, where V

(k)
t = (Y

[go
1 ]

2t,k , . . . , Y
[go

1 ]
2t,p ,

Y
[go

1 ]
2t+1,1, . . . , Y

[go
1 ]

2t+1,k−1, . . . , Y
[go

g ]

2t,k , . . . , Y
[go

g ]

2t,p , Y
[go

g ]

2t+1,1, . . . , Y
[go

g ]

2t+1,k−1). One can obtain
estimates of the hyperparameters of Model–k in the same way as in Case 1.

The covariates, i.e., the weekday effects, are constructed by starting from “Monday∗”
for the {U(k)

t } and “Tuesday∗” for the {V(k)
t }, k = 1, . . . , p, where the “∗” has been

added to signify that the beginning of the day has been shifted successively by
0, 1, . . . , 23 hours, according to which hour of day 121 is to be predicted. After
removing this “weekday effect” from {U(k)

t }s and {V(k)
t }s, we use EnviRo.stat, free

downloadable software from http://www.enviro.stat.ubc.ca, to implement these 24
models.

Suppose that all we have u ungauged sites in our discretized space–field field.
Moreover, m out of n time points at gauged sites are formed by the unobserved

response variables. Let Y = (Y[u],Y[g]) : n× (g + u)p where Y[g] = (Y[gm]′,Y[go]′)′ :
n× gp and Y[u] : n×up, with Y[gm] : m× gp and Y[go] : (n−m)× gp. The temporal
prediction problem requires the predictive posterior distribution of (Y[gm]|Y[go],H),
m being the temporal unit to be predicted. Specifically, m = 1 in the one–day–ahead
prediction at gauged sites.

Theorem 1 (Le and Zidek, 2006, p.160–161) Let

Zβ
[g]
0 =

(
µ(1)

µ(2)

)
:

(
m× gp

(n−m)× gp

)

and

In + ZF−1Z′ =

(
A11 A12

A21 A22

)
:

(
m×m m× (n−m)

(n−m)×m (n−m)× (n−m)

)
.

Given all the estimated hyperparameters H = {F, β0,Ω,Λ1, δ1,Λ0, τ00,H0, δ0},
the marginal posterior distribution is given by

Y[gm]|Y[go],H ∼ tm×gp(µ(u|g),Φ(u|g) ⊗Ψ(u|g), δ(u|g)), (1)
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where

µ(u|g) = µ(1) + A12A
−1
22 (Y[go] − µ(2)) : m× gp (2)

Φ(u|g) =
δ1 − gp + 1

δ1 − gp + n−m + 1
A11◦2 : m×m (3)

Ψ(u|g) =
1

δ1 − gp + 1
{Λ1 ⊗Ω + (Y[go] − µ(2))

′A−1
22 (Y[go] − µ(2))} : gp× gp (4)

δ(u|g) = δ1 − gp + n−m + 1, (5)

where A11◦2 = A11 −A12A
−1
22 A21.

To obtain the one–day–ahead temporal prediction at gauged sites, one needs
the predictive posterior distribution of the unobserved response variable of interest,
that is, the last “species” or “pollutant” in the multivariate response vector whose
role is now being played by an hourly ozone concentration. Two different predictive
posterior distributions of the last pollutant (i.e., the pth pollutant) are considered
for Model–1 and Model–k, k ∈ {2, . . . , p}. These two cases follow:

• For Model–1, Y[go] has the observed responses from day 1 to day 119, and
Y[gm] can be written as

Y[gm] = ((Y
[gm

1 ]
121,1, . . . , Y

[gm
g ]

121,p)
′
, . . . , (Y

[go
1 ]

120,1, . . . , Y
[go

g ]

120,p)
′
)′

=

(
Y

[gm
1:g ]

121,1:p

Y
[go

1:g ]

120,1:p

)
: 2× gp,

with Y
[gm

1:g ]

121,1:p : 1× gp, the unobserved response vector of day 121 and Y
[go

1:g ]

120,1:p :
1 × gp, the observed response vector of day 120. Hence we have m = 2 and
n = 121 in Theorem 1. The predictive posterior distribution of Y[gm] can be

obtained by (2)–(5). To obtain the predictive distribution of Y
[gm

1:g ]

121,1:p given

Y
[go

1:g ]

1:120,1:p, one can decompose µ(u|g), Φ(u|g) and Ψ(u|g) as follows:

µ(u|g) =

(
µ1r

µ2r

)

and

δ(u|g)Φ(u|g) =

(
B11 B12

B21 B22

)
,

where µir : 1× gp and Bij : 1× 1 for i, j = 1, 2. Hence, the predictive posterior

distribution of Y
[gm

1:g ]

121,1:p is given by

Y
[gm

1:g ]

121,1:p|Y
[go

1:g ]

120,1:p,Y
[go

1:g ]

1:119,1:p,H ∼ t1×gp(µ1r + B12B
−1
22 (Y

[go
1:g ]

120,1:p − µ2r),
B11◦2

δ(u|g) + 1

⊗Ψ(u|g)(Igp + Ψ−1
(u|g)(Y

[go
1:g ]

120 − µ2r)
′B−1

22 (Y
[go

1:g ]

120

−µ2r)), δ(u|g) + 1). (6)
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Let el
k : k× 1 denote a vector all of whose elements are 0 say for the jth which

is 1, j 6= l, j = 1, . . . , k. Let E1 = block–diag–matrix{ep
p} : gp× g. At Gauged

Site j ∈ {1, . . . , g}, the predictive distribution of the pth unobserved response

Y
[gm

j ]

121,p, that is, Y
[gm

1:g ]

121,1:pE1e
j
p, also has a t–distribution:

Y
[gm

j ]

121,p|Y
[go

1:g ]

120,1:p,Y
[go

1:g ]

1:119,1:p,H ∼ tδ(u|g)+1(µ
∗E1e

j
p, φ

∗ej
p

′
E′

1Ψ
∗E1e

j
p),

(7)

where µ∗ = µ1r + B12B
−1
22 (Y

[go
1:g ]

120,1:p − µ2r), φ∗ = B11◦2
δ(u|g)+1

and Ψ∗ = Ψ(u|g)(Igp +

Ψ−1
(u|g)(Y

[go
1:g ]

120,1:p − µ2r)
′B−1

22 (Y
[go

1:g ]

120,1:p − µ2r)).

• For Model–k, k = 2, . . . , p, Y[go] has the observed responses from Day 1 to
Day 119, while Y[gm] consists of k − 1 unobserved responses and p − k + 1
observed ones at each gauged site. To predict the responses one–day–ahead
at gauged sites in this field, we have m = 1 and n = 120 in Theorem 1.
Let E2j = (e

(j−1)p+1
gp , . . . , ejp

gp) : gp × p for j = 1, . . . , g. At Gauged Site (GS)
j ∈ {1, . . . , g}, we have

Y[gm]E2j|Y[go],H ∼ t1×p(µ(u|g)E2j, Φ(u|g) ⊗ E′
2jΨ(u|g)E2j, δ(u|g)).

(8)

Notice that Y[gm]E2j is (Y
[go

j ]

n−1,k, . . . , Y
[go

j ]

n−1,p, Y
[gm

j ]

n,1 , . . . , Y
[gm

j ]

n,k−1). Let E3 = (ep
p, . . . ,

e1
p) : p × p. Multiplying Y[gm]E2j by E3 reverses the order of the pollutants

such that the response of the last hour being relocated in the first position of
the new response vector, the response of the second last hour in the second
position of the new response vector, and so on. In other words, we obtain the

following new response vector: (Y
[gm

j ]

n,k−1, . . . , Y
[gm

j ]

n,1 , Y
[go

j ]

n−1,p, . . . , Y
[go

j ]

n−1,k). That new
response has the following multivariate t–distribution:

Y[gm]E2jE3|Y[go],H ∼ t1×p(µj, Φ(u|g) ⊗Ψj, δ(u|g)), (9)

where µj = µ(u|g)E2jE3 and Ψj = E′
3E

′
2jΨ(u|g)E2jE3. Decompose Y[gm]E2jE3,

µj and Ψj as follows:

Y[gm]E2jE3 = (T1c,T2c) : (1× (k − 1), 1× (p− k + 1)),

µj = (µ1c, µ2c) : (1× (k − 1), 1× (p− k + 1)),

and

Ψj =

(
C11 C12

C21 C22

)
:

(
(k − 1)× (k − 1) (k − 1)× (p− k + 1)

(p− k + 1)× (k − 1) (p− k + 1)× (p− k + 1)

)
.
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Hence the unobserved response variable T1c is also t–distributed:

T1c|T2c,Y
[go],H ∼ t1×(k−1)(µ1c + (T2c − µ2c)C

−1
22 C21,

δ(u|g)

δ(u|g) + p− k + 1

×Φ(u|g){1 + (δ(u|g)Φ(u|g))
−1(T2c − µ2c)C

−1
22 (T2c − µ2c)

′}
⊗C11◦2, δ(u|g) + p− k + 1). (10)

The last “pollutant”, that is, the first entry of T1c, can be predicted by mul-
tiplying T1c with e1

k−1. Consequently, the predictive posterior distribution of

Y
[gm

j ]

n,k−1 is given as follows:

Y
[gm

j ]

n,k−1|Y[go],Y
[go

j ]

n−1,k:p,H ∼ tδ(u|g)+p−k+1((µ1c + (T2c − µ2c)C
−1
22 C21)e

1
k−1,

δ(u|g)

δ(u|g) + p− k + 1
Φ(u|g){1 + (δ(u|g)Φ(u|g))

−1

×(T2c − µ2c)C
−1
22 (T2c − µ2c)

′}(e1
k−1)

′C11◦2e1
k−1).

(11)

The corresponding predictive variance of the (k− 1)th hour of the 121st day at
GS j is then given by:

Var(Y
[gm

j ]

n,k−1|Y[go],Y
[go

j ]

n−1,k:p,H) =
δ(u|g)

δ(u|g) + p− k − 1
Φ(u|g){1 + (δ(u|g)Φ(u|g))

−1

×(T2c − µ2c)C
−1
22 (T2c − µ2c)

′}(e1
k−1)

′C11◦2e1
k−1.

It is straightforward to construct the 95% pointwise forecast intervals at the
(k − 1)th hour of the 121st day at each gauged site from (11).

2.2 r–step–ahead prediction with the BSP

In this subsection, we generalize the forecast results with the BSP approach from
one–day–ahead to r–step–ahead (r ∈ N ) prediction. Denote by N the total number
of days of observed responses. We also consider the multivariate setting with p
being the total number of pollutants or species and g, total number of gauged sites.
Similarly, we generalize this forecast result for two cases: (i) predict the response
variable at the last hour of the (N + r)th day; and (ii) predict the response variable
at the (k − 1)th hour of the (N + r)th day, for k = 2, . . . , p.

Case (i): Predict the response variable at the last hour of the (N + r)th

day

Lemma 1 The odd–day–response {U(1)
t , t = 1, . . . , tO} can be formed by U

(1)
t =

(Y
[go

1 ]
2t−1,1, . . . , Y

[go
g ]

2t−1,p). Note that tO = K if N = 2K or N = 2K−1 for some K ∈ N .
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Lemma 2 The even–day–response {V(1)
t , t = 1, . . . , tE} can be formed by V

(1)
t =

(Y
[go

1 ]
2t,1 , . . . , Y

[go
g ]

2t,p ). Note that tE = K − 1 if N = 2K and tE = K if N = 2K − 1 for
some K ∈ N .

Remark 1 Notice that the total number of observations in subdata matrices can be

different, depending on whether N is an odd or even number. Let tN be the total

number of observed response variables. So tN = tO for the odd–day–response and

tE, for the even–day–response.

To keep things simple, we use N instead of tN in the following theorem:

Theorem 2 Let Y[gm] = ((Y
[gm

1:g ]

N+r,1:p)
′, . . . , (Y

[gm
1:g ]

N+1,1:p)
′, (Y

[go
1:g ]

N,1:p)
′)′ : (r + 1) × gp and

Y[go] = Y
[go

1:p]

1:(N−1),1:p : (N−1)×gp. Then we have the following predictive distributions:

(i) (Y[gm]|Y[go],H) ∼ t(r+1)×gp(µ̆(u|g), Φ̆(u|g) ⊗ Ψ̆(u|g), δ̆(u|g)), where

µ̆(u|g) = µ(1) + A12A
−1
22 (Y[go] − µ(2))

Φ̆(u|g) =
δ1 − gp + 1

δ1 − gp + N + 1
A11◦2

Ψ̆(u|g) =
1

δ1 − gp + 1
{Λ1 ⊗Ω + (Y[go] − µ(2))

′A−1
22 (Y[go] − µ(2))}

δ̆(u|g) = δ1 − gp + N + 1.

(ii) The predictive distribution of Y
[gm

j ]

N+r,p, the pth unobserved response at the (N+r)th

day at GS j, is t–distributed:

Y
[gm

j ]

N+r,p ∼ tδ̆((e
j
r)
′µ̆ej

g,
δ̆

δ̆ − 2
(ej

r)
′Φ̆ej

r(e
j
g)
′Ψ̆ej

g), (12)

where

µ̆ = µ̆1r + B̆12B̆
−1
22 (Y

[go
1:g ]

N,1:p − µ̆2r)

Φ̆ =
1

δ(u|g) + 1
B̆11◦2

Ψ̆ = Ψ̆(u|g)[Igp + Ψ̆−1
(u|g)(Y

[go
1:g ]

N,1:p − µ̆2r)
′B̆−1

22 (Y
[go

1:g ]

N,1:p − µ̆2r)]

δ̆ = δ̆(u|g) + 1.

The proof and details can be seen in Appendix A.1.
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Case (ii): Predict the response variable at the (k−1)th hour of the (N +r)th

day, for k = 2, . . . , p.

Lemma 3 The odd–day–response {U(k)
t , t = 1, . . . , tO} can be formed by U

(k)
t =

(Y
[go

1 ]
2t−1,k, . . . , Y

[go
1 ]

2t−1,p, Y
[go

1 ]
2t,1 , . . . , Y

[go
1 ]

2t,k−1, . . . , Y
[go

g ]

2t−1,k, . . . , Y
[go

g ]

2t−1,p, Y
[go

g ]

2t,1 , . . . , Y
[go

g ]

2t,k−1) : 1 ×
gp. Note that tO = K ∈ N if N = 2K and tO = K − 1 if N = 2K − 1 for some
K ∈ N .

Lemma 4 The even–day–response {V(k)
t , t = 1, . . . , tE} can be formed by V

(k)
t =

(Y
[go

1 ]
2t,k , . . . , Y

[go
1 ]

2t,p , Y
[go

1 ]
2t+1,1, . . . , Y

[go
1 ]

2t+1,k−1, . . . , Y
[go

g ]

2t,k , . . . , Y
[go

g ]

2t,p , Y
[go

g ]

2t+1,1, . . . , Y
[go

g ]

2t+1,k−1) : 1 ×
gp. Note that tE = K − 1 if N = 2K or N = 2K − 1 for some K ∈ N .

Remark 2 We also let tN represent the total number of observed responses. So tN

is tO for an odd–day–response and tE, for an even–day–response.

As before we use N instead of tN to keep notation simple.

Theorem 3 Let Y[gm] = ((W
[gm

1:g ]

N+r−1)
′, . . . , (W

[gm
1:g ]

N+1)
′, (Y∗

N
[gm

1:g ])′)′ : r × gp, where

W
[gm

j ]

i = (Y
[gm

j ]

i,k , . . . , Y
[gm

j ]

i,p , Y
[gm

j ]

i+1,1, . . . , Y
[gm

j ]

i+1,k−1) : 1×gp, and Y∗
N

[gm
j ] = (Y

[go
j ]

N,k , . . . , Y
[go

j ]

N,p ,

Y
[gm

j ]

N+1,1, . . . , Y
[gm

j ]

N+1,k−1)) : 1×gp, for i = N +1, . . . , N +r−1 and j = 1, . . . , g. We also

denote Y[go] = Y∗
1:(N−1)

[go
1:g ] : (N−1)×gp, where Y∗

i
[go

j ] = (Y
[go

j ]

i,k , . . . , Y
[go

j ]

i,p , Y
[go

j ]

i+1,1, . . . ,

Y
[go

j ]

i+1,k−1) : 1× gp. We then have the following forecast distributions:

(i)

Y[gm]|Y [go],H ∼ tr×gp(µ̃(u|g), Φ̃(u|g) ⊗ Ψ̃(u|g), δ̃(u|g)),

where

µ̃(u|g) = µ(1) + A12A
−1
22 (Y[go] − µ(2)) : r × gp

Φ̃(u|g) =
δ1 − gp + 1

δ1 − gp + N
(A11 −A12A

−1
22 A21)

Ψ̃(u|g) =
1

δ1 − gp + 1
{Λ1 ⊗Ω + (Y[go] − µ(2))

′A−1
22 (Y[go] − µ(2))}

δ̃(u|g) = δ1 − gp + N.

9



(ii)

(Y
[gm

1:g ]

(N+1):(N+r−1),1:p,Y
[gm

1:g ]

N+r,1:(k−1)|Y
[go

1:g ]

1:N,1:p,H) ∝
g∏

j=1

(Tr
1j|Y

[gm
j ]

N+1,1:(k−1),Y
[go

1:g ]

1:N,1:p,H)

×(Y
[gm

j ]

N+1,1:(k−1)|Y
[go

1:g ]

1:N,1:p,H)

∼
g∏

j=1

t(r−1)×p(µ̃
∗
1j, Φ̃

∗ ⊗ Ψ̃∗
j , δ̃(u|g)

+1)t1×(k−1)(µ̃
∗
2j, Φ̃

∗
2j ⊗ Ψ̃∗

2j,

δ̃(u|g) + p− k + 1),

where µ̃∗1j, Φ̃∗, and Ψ̃∗
j are given in (15) and µ̃∗2j, Φ̃∗

2j, and Ψ̃∗
2j, in (16).

The proof and details can be seen in Appendix A.2.

Remark 3 From Theorem 3, the forecast distribution for the unobserved response
variables from Day N + 1 to N + r is the product of a sequence of matrix–t and t
distributions. This implies no analytic form can be found for the response variable
at the (k − 1)th (for k = 2, . . . , p) hour of the (N + r)th day at GS j (j = 1, . . . , g).

2.3 r–step–ahead prediction with the DLM

The more conventional approach of state space modelling can also be used for fore-
casting, more specifically in the Bayesian setting, dynamic linear modelling DLM.
For the ozone field with which we are concerned, a spatial as well as temporal corre-
lation structure is involved. With V denoting the matrix of intersite distances and
λ the so–called range parameter, the measurement and state equations of the DLM
can be written

Yt = F′txt + νt νt ∼ N(0, σ2exp(−V/λ))
xt = xt−1 + ωt ωt ∼ N(0, σ2W)

with initial information: x0|D0 ∼ N(m0, σ
2
0C0). One can obtain the posterior distri-

bution of the state parameters at the last known time point, n, that is, xn|y1:n, θ ∼
N(mn, σ2Cn), using the Kalman filter, a smoothing method and the Metropolis–
within–Gibbs sampling algorithm (Huerta et al. 2004; Dou et al. 2007, 2008).

Given the distribution of the state parameters at the last time point, n, the
observed responses until time n, y1:n, and the model parameters, θ = {λ, σ2, a1, a2},
the r–step–ahead prediction is given by

yn+r|y1:n, θ ∼ N(F′t+rmn, σ
2{F′t+r(Cn + rW)Ft+r + exp(−V/λ)}),

(13)

10



for r ∈ N (West and Harrison, 1998; Huerta et al., 2004). Hence, n = 2880 and
r = 1, . . . , 24 for the one–day–ahead prediction in the Chicago database. For any
fixed r, the forecast response, yn+r, can also be obtained by the MCMC (Markov
Chain Monte Carlo) method. More specifically, at iteration j, suppose we have

updated the model parameters λ(j), σ2(j)
, a

(j)
1 and a

(j)
2 using the FFBS (forward–

filtering–backward–sampling) algorithm (Carter and Kohn 1994; Huerta et al. 2004;
Dou et al. 2007, 2008). That is, one has

xn|y1:n, θ
(j) ∼ N(mn

(j), σ2(j)
Cn

(j)).

Then, the forecast response at iteration j, yn+r
(j), can be drawn from (13), that is,

yn+r|y1:n, θ(j) ∼ N(Ft+r
(j)′mn

(j), σ2(j){Ft+r
(j)′(Cn

(j) + rW(j))Ft+r
(j)

+ exp(−V/λ(j))}).
Consequently, the forecast responses are obtained by the sample means of {yn+r

(j) :
j = 1, . . . , J} (J = 500; r = 1, . . . , 24). The empirical forecast intervals at the 95%
nominal level can be obtained by corresponding sample quantiles.

2.4 r–step–ahead prediction with the NAIVE approach

The other alternative approach, we call NAIVE, helps us assess the model per-
formance of the one–day–ahead prediction with the multivariate BSP and DLM
approaches since it is extremely simple and hence provides a good baseline for
reference. That approach models the response variable by the grand mean, day
effect and hour effect. To be more specific, the response variable used in this ap-
proach is the vectorized square–root ozone levels at each gauged site. Using the
same notation as above, at each gauged site j ∈ {1, . . . , g}, the response variable is

Yj
1:n = (Y

[go
j ]

1,1 , . . . , Y
[go

j ]

1,p , . . . , Y
[go

j ]

n,1 , . . . , Y
[go

j ]
n,p )′ : np × 1, for n = 120 and p = 24. The

design matrix X contains three columns: the first column consists of 1s, building
in long–term linear trend; the second for the days, capturing the day–of–the–week
effect, i.e., Monday, Tuesday, etc.; and the last one for the hour effects, a substitute
for day effect but one that gives more reasonable results. In other words, its “design
matrix” can be written as

X =




1′p 1′p ε′p
...

...
...

1′p n1′p ε′p


 : (np)× 3,

where 1′p = (1, . . . , 1)′ : p× 1 and ε′p = (1, . . . , p)′ : p× 1.
Then our model is given by Y = Xβ +ε, where ε is the mean 0 Gaussian process

to preserve its great simplicity. The coefficient vector at Gauged Site j, βj, is thus

estimated by the least squared estimator, β̂j = (X′X)−1X′Yj
1:n.

11



Hence, the r–step–ahead prediction at GS j is given by Ŷ
j

n+r = Xn+rβ̂j for
r ∈ N and j = 1, . . . , g, with Xn+r being (1′p, (n + r)1′p, ε

′
p) : p× 3.

In the next section we apply our methods to make one–day–ahead forecasts with
Chicago data.

3 Application

The response of interest in this section is the square–root of hourly ground–level
ozone concentrations (ppb) for an entire summer in the Chicago area, the data be-
ing extracted from the AQS database. That transformation being made to make the
data distribution more nearly Gaussian. The extracted database contains 24 mon-
itoring stations, irregularly located in this area. The hourly ozone concentrations
have been measured at each of the sites considered. The joint spatial and tempo-
ral dependence of the hourly ozone levels are then modelled as a spatio–temporal
process in the spatio–temporal field over the Chicago area.

To facilitate the assessment of the model’s performance for interpolation and
prediction, 14 sites are selected as “gauged” sites from 24 monitoring stations, the
remaining 10 being taken to be ungauged sites. Figure 1 represents the geographical
locations of these 14 gauged and 10 ungauged sites. Each has a few missing values
but the gauged sites have many fewer zero measurements during the overall time
span than most of the ungauged sites, thus providing much more information for
this spatio–temporal field (see Figure 2).

Figure 3 shows a side–by–side boxplot of the square–root of hourly ozone con-
centrations at each one of the 24 monitoring stations across all the time points. It
shows that GS 3 behaves differently because of its deviation from the median for all
sites and times. Figure 1 shows that GS 3 to be near the Michigan River. However,
it is unknown if the difference of the observed responses at GS 3 from the rest are
due to the influence of that river or because other sites are also close to it, for ex-
ample, GS 1 and 10. One might expect that any model not taking account of this
difference could lead to a poor model fit. Dou et al. (2008) examined this issue
when comparing the spatial interpolation of ozone concentrations’ field using two
different approaches: the multivariate BSP and DLM in another application. Here
we omit this examination.

To explore this database further, weekday and hourly effects are examined in
Figures 4 and 5, respectively. The latter are approximately constant over all gauged
sites; in particular, the variability of the hourly effects from 0 A.M. to 10 A.M.
is slightly larger than that of the remaining hours after 10 A.M., indicating the
relatively strong constant hourly effects from 10 A.M. to 11 P.M. Also notice that the
high ozone levels occur in the middle of the day. Given the starting time point of this
database is 11 A.M., the peak hour of ozone levels actually occur around 4–5 P.M.,
consistent with the known phenomenon from other ozone studies. The weekday
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Figure 1: Geographical locations for the Chicago AQS database (2000), where the latitude
and longitude are measured in degrees. (◦ = G = gauged sites and × = UG = ungauged
sites)

effects in Figure 4 also indicate constant weekday effects across all gauged sites.
The above exploratory data analysis (EDA) suggests modelling constant weekday
and hourly effects across all gauged sites. Constant weekday and hourly effects point
to constant effects for appropriate covariates in the multivariate BSP approach. The
corresponding model settings and methodology for the multivariate BSP has been
discussed in the context of the Chicago area’s hourly ozone concentrations’ field in
Section 2.1.

4 Comparisons and results

Figures 6–19 plot the forecasts of the square–root of ozone levels on the 121st day by
the multivariate BSP, univariate DLM and NAIVE approaches, the 95% pointwise
forecast intervals for that day by the multivariate BSP and DLM approaches, and
the observations from 114th to 121st days, at each of these 14 gauged sites. The
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Figure 2: Boxplots for the rates of: (a) missing measurements (%); and (b) zero measure-
ments (%), at 24 monitoring stations in the Chicago AQS database. (G = gauged sites
and UG = ungauged sites)
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Figure 3: Boxplots for the square–root of hourly ozone concentrations (
√

ppb) at 24
monitoring stations in the Chicago AQS database. (G 1 = Gauged Site 1; UG 1 =
Ungauged Site 1; and so on.)

multivariate BSP is much more accurate than either the DLM or NAIVE approaches.
In fact, its forecast performance is rather good at most gauged sites.

Table 1 presents the mean square forecast error (MSPE) of the forecast responses
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Figure 4: The weekday effect of the square–root of hourly ozone concentrations (
√

ppb)
at 14 gauged sites in the Chicago AQS database.
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Figure 5: The hourly effect of the square–root of hourly ozone concentrations (
√

ppb) at
14 gauged sites in the Chicago AQS database.

on the 121st day at each one of 14 gauged sites using the three approaches. At GS
j, the MSPE of the prediction at hour h can be computed by:

MSPEj =
24∑

h=1

(PREDj
h −OBSj

h)
2,
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Gauged Site MSPE(NAIVE) MSPE(DLM) MSPE(BSP)
1 0.52 9.38 0.50
2 0.96 7.38 0.40
3 1.93 4.66 0.40
4 1.59 4.24 0.49
5 2.81 2.60 3.00
6 0.68 2.31 0.74
7 0.51 4.19 0.22
8 1.44 7.48 1.01
9 1.60 7.01 0.59

10 0.44 5.50 0.50
11 0.83 9.25 0.49
12 0.75 3.41 0.45
13 1.71 12.27 0.73
14 2.44 5.61 1.09

Table 1: The mean square forecast error (MSPE) of the one–day–ahead prediction at 14
gauged sites by the multivariate BSP, DLM, and NAIVE approaches. The BSP dominates
in all but 3 cases where it essentially ties with one or another of its competitors.

where PREDj
h is the forecast response at hour h of the 121st day and OBSj

h, the
observed response at the same hour of the 121st day, at GS j. The DLM has
the poorest MSPE over all gauged sites compared with NAIVE and the BSP. The
NAIVE approach performs slightly better than the BSP at GS 5, 6, and 10. The
BSP carries the smallest MSPE across most gauged sites among these three.

Figure 20 plots the length of the 95% pointwise forecast intervals by the BSP
at 24 hours of the 121st day. Starting from the middle hours of that day, i.e., 9
A.M., the forecast error bands tend to increase after that until the last hour, 11
P.M., reflecting the increasing uncertainties due to the fact that fewer responses are
observed as time increases.

Figure 21 plots the length of the empirical 95% forecast intervals by the DLM at
24 hours of the 121st day. These lengths are close to each other but have the wiggly
periodic behaviour across all gauges sites, a characteristic previously observed in
Dou et al. (2007, 2008). That behaviour derives from the cosines and sines in the
mean function and their random coefficients, which become components of variance
when the posterior variance is found. Since these harmonic terms are squared, the
12 hour cycle has high peaks at 6 hour intervals, accounting for their wiggly nature.

Though these lengths are very close to each other, the DLM actually underesti-
mates the forecast variabilities at gauged sites as seen in Figure 22 which plots the
coverage probabilities of the DLM and BSP approaches, and also shows a slightly
overestimated predictive variance for the BSP, at the 95% nominal level.
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Moreover, the results in Section 2.1 have been generalized to an arbitrary time
points in Section 2.2, not limited to the case of 121 days of response vectors in this
paper.

Therefore, we conclude that the multivariate BSP approach is more accurate on
the one–day–ahead prediction at gauged sites in the Chicago AQS database (2000)
than both the NAIVE and DLM approaches.
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Figure 6: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to Day
121, the predicted values using the multivariate BSP, DLM and NAIVE approaches, and
the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches at
GS 1.
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Figure 7: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to Day
121, the predicted values using the multivariate BSP, DLM and NAIVE approaches, and
the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches at
GS 2.
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Figure 8: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to Day
121, the predicted values using the multivariate BSP, DLM and NAIVE approaches, and
the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches at
GS 3.
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Figure 9: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to Day
121, the predicted values using the multivariate BSP, DLM and NAIVE approaches, and
the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches at
GS 4.
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Figure 10: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 5.
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Figure 11: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 6.
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Figure 12: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 7.
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Figure 13: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 8.
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Figure 14: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 9.
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Figure 15: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 10.
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Figure 16: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 11.
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Figure 17: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 12.
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Figure 18: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 13.
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Figure 19: The observed square–root of ozone concentrations (
√

ppb) from Day 114 to
Day 121, the predicted values using the multivariate BSP, DLM and NAIVE approaches,
and the 95% pointwise forecast intervals using the multivariate BSP and DLM approaches
at GS 14.
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Figure 20: The width of the 95% pointwise forecast intervals of the one–day–ahead pre-
diction at 14 gauged sites using the multivariate BSP approach.
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Figure 21: The width of the 95% pointwise forecast intervals (PIs) of the one–day–ahead
prediction at 14 gauged sites using the DLM approach.
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Figure 22: Boxplots of the coverage probabilities using the DLM and multivariate BSP
approaches at the 95% nominal level.

5 Conclusion

The temporal prediction of the ground–level ozone concentrations in the Chicago’s
hourly ozone field shows the success of the adjusted multivariate BSP approach, com-
paring with two others: the DLM and NAIVE. This approach provides a promising
new approach, currently under investigation, to time series analysis in complicated
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situations like the one addressed in this paper where the small time scale correlations
vary over time and are hard to model by conventional approaches.

A potential problem with this adaptive approach is due to the loss of the infor-
mation when only a subset of the whole database is used. Further extension of the
correlated response vector in the multivariate BSP modelling needs to be explored.
One possible solution is a dynamic version of the multivariate BSP, the topic for a
manuscript currently under preparation (Dou et al 2009).

A Supplementary results

A.1 Results for Theorem 2

Proof 1 (i) The result is straightforward by Theorem 1 where m = r + 1 and
n = N + r.

(ii) Decompose µ̆(u|g) and δ(u|g)Φ̆(u|g) as follows:

µ̆(u|g) =

(
µ̆1r

µ̆2r

)
:

(
r × gp
1× gp

)

and

δ(u|g)Φ̆(u|g) =

(
B̆11 B̆12

B̆21 B̆22

)
:

(
r × r r × 1
1× r 1× 1

)
.

Hence, we have

Y
[gm

1:g ]

(N+1):(N+r),1:p|Y
[go

1:g ]

N,1:p,Y
[go

1:g ]

1:(N−1),1:p,H ∼ tr×gp(µ̆, Φ̆⊗ Ψ̆, δ̆), (14)

where µ̆, Φ̆, Ψ̆ and δ̆ are given in Theorem 2.

We have (ej
r)
′Y

[gm
1:g ]

(N+1):(N+r),1:pE1e
j
g = Y

[gm
j ]

N+r,p, that is, the unobserved response

of the last hour of the (N + r)th day at Gauged Site j (j = 1, . . . , g). Hence we
have

Y
[gm

j ]

N+r,p ∼ t1×1((e
j
r)
′µ̆ej

g, (e
j
r)
′Φ̆ej

r ⊗ ((ej
g)
′Ψ̆ej

g), δ̆),

that is, tδ̆((e
j
r)
′µ̆ej

g,
δ̆

δ̆−2
(ej

r)
′Φ̆ej

r(e
j
g)
′Ψ̆ej

g).

A.2 Results for Theorem 3

Proof 2 (i) The result is straightforward by Theorem 1 where m = r and n =
N + r − 1.
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(ii) Same as in Section 2.1, we have

Ỹ
[gm

j ]
= Y[gm]E2jE3 =




Y
[gm

j ]

N+r,k−1 . . . Y
[gm

j ]

N+r,1 Y
[gm

j ]

N+r−1,1 . . . Y
[gm

j ]

N+r−1,k
...

...
...

...

Y
[gm

j ]

N+1,k−1 . . . Y
[gm

j ]

N+1,1 Y
[go

j ]

N,1 . . . Y
[go

j ]

N,k


 : r×p,

for j = 1, . . . , g. From (i) in Theorem 3, we have

Ỹ
[gm

j ] ∼ tr×p(µ̃j, Φ̃(u|g) ⊗ Ψ̃j, δ̃(u|g)),

where

µ̃j = µ̃(u|g)E2jE3

Ψ̃j = E′
3E

′
2jΨ̃(u|g)E2jE3.

We first decompose Ỹ
[gm

j ]
, µ̃j and δ̃(u|g)Φ̃(u|g) as follows:

Ỹ
[gm

j ]
=

(
Tr

1j

Tr
2j

)
:

(
(r − 1)× p

1× p

)

µ̃j =

(
µ̃1j

µ̃2j

)
:

(
(r − 1)× p

1× p

)

δ̃(u|g)Φ̃(u|g) =

(
Φ̃11 Φ̃12

Φ̃21 Φ̃22

)
:

(
(r − 1)× (r − 1) (r − 1)× 1
1× (r − 1) 1× 1

)
.

Consequently, we have

(a)
Tr

2j|Y[go],H ∼ t1×p(µ̃2j, Φ̃22 ⊗ Ψ̃j, δ̃(u|g))

(b)
Tr

1j|Tr
2j,Y

[go],H ∼ t(r−1)×p(µ̃
∗
1j, Φ̃

∗ ⊗ Ψ̃∗
j , δ̃(u|g) + 1),

where




µ̃∗1j = µ̃1j + Φ̃12Φ̃
−1
22 (Tr

2j − µ̃2)

Φ̃∗ =
δ̃(u|g)

δ̃(u|g)+1
(Φ̃11 − Φ̃12Φ̃

−1
22 Φ̃21)

Ψ̃∗
j = Ψ̃j(Ip + Ψ̃−1

j (Tr
2j − µ̃2j)

′Φ̃−1
22 (Tr

2j − µ̃2j)).

(15)

We then decompose Tr
2j, µ̃r

2j, and Ψ̃j as follows:

Tr
2j = (Tj

21 Tj
22) : (1× (k − 1) 1× (p− k + 1))

µ̃r
2j = (µj

21 µj
22) : (1× (k − 1) 1× (p− k + 1))

Ψ̃j =

(
Ψ̃j

11 Ψ̃j
12

Ψ̃j
21 Ψ̃j

22

)
:

(
(k − 1)× (k − 1) (k − 1)× (p− k + 1)

(p− k + 1)× (k − 1) (p− k + 1)× (p− k + 1)

)
.
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Hence the predictive distribution of Tj
21, i.e., Y

[gm
j ]

N+1,1:(k−1) is given by

Y
[gm

j ]

N+1,1:(k−1)|Y[go],H ∼ t1×(k−1)(µ̃
∗
2j, Φ̃

∗
2j ⊗ Ψ̃∗

2j, δ̃(u|g) + p− k + 1),

where




µ̃∗2j = µj
21 + (Tj

22 − µj
22)(Ψ̃

j
22)

−1Ψ̃j
21

Φ̃∗
2j =

δ̃(u|g)

δ̃(u|g)+p−k+1
Φ̃j

22(1 + (δ̃(u|g)Φ̃
j
22)

−1(Tj
22 − µj

22)(Ψ̃
j
22)

−1(Tj
22 − µj

22)
′)

Ψ̃∗
2 = Ψ̃j

11 − Ψ̃j
12(Ψ̃

j
22)

−1Ψ̃j
21.

(16)
Therefore, we have

p(Y
[gm

1:g ]

(N+1):(N+r−1),1:p,Y
[gm

1:g ]

N+r,1:(k−1)|Y
[go

1:g ]

1:N,1:p,H) ∝
g∏

j=1

p(Tr
1j|Y

[gm
j ]

N+1,1:(k−1),Y
[go

1:g ]

1:N,1:p,H)

×p(Y
[gm

j ]

N+1,1:(k−1)|Y
[go

1:g ]

1:N,1:p,H).

The predictive distribution for Y
[gm

1:g ]

N+r,k−1 has no analytic form.
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