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SUMMARY.  Inference in gene-environment studies can sometimes exploit the 

assumption of Mendelian randomization that genotype and environmental exposure are 

independent in the population under study.  Moreover, in some such problems it is 

reasonable to assume that the disease risk for subjects without environmental exposure 

will not vary with genotype.  When both assumptions can be invoked, we consider the 

prospects for inferring the dependence of disease risk on genotype and environmental 

exposure (and particularly the extent of any gene-environment interaction), without 

detailed data on environmental exposure.  The data structure envisioned involves data on 

disease and genotype jointly, but only external information about the distribution of the 

environmental exposure in the population.  This is relevant as for many environmental 

exposures individual-level measurements are costly and/or highly error-prone.  Working 

in the setting where all relevant variables are binary, we examine the extent to which such 

data is informative about the interaction, via determination of the large-sample limit of 

the posterior distribution.  Comparisons are drawn with inferences based on joint 

measurements of disease, genotype, and error-prone exposure.  The ideas are illustrated 

using data from a case-control study for bladder cancer involving smoking behaviour and 

the NAT2 genotype. 

KEY WORDS: Bayesian inference; Case-control study; Exposure misclassification; 

Gene-environment interaction; Mendelian randomization; Non-identifiable model; Semi-

ecological design. 
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1 Introduction 

In epidemiology and toxicology, ‘exposure’ refers to a characteristic of the environment 

that a subject encounters through behaviour (e.g. exposure to cigarette smoke), while 

‘biologically effective dose’ is the amount of toxic substance that reaches a target organ 

or tissue in the subject’s body following exposure and metabolism (e.g. the mass of 

aromatic amines that reaches the bladder after bio-activation by N-acetyl transferase 

(NAT) enzymes).  Exposure is usually assumed to be independent of person’s genetic 

make-up, with some notable exceptions where genetics affects behavior, such as alcohol 

consumption in persons who are inebriated easily due to genetic susceptibility (Davey 

Smith & Ebrahim 2004), or cruciferous vegetable intake for persons with a particular 

haplotype for bitter-taste response (Sacerdote et al. 2007).  In contrast, biologically 

effective dose, which lies exclusively on the causal pathway between exposure and 

disease, clearly depends on genetics for some exposures. 

The Mendelian randomization assumption, which we take in the most generic form 

to simply assert the random allocation of alleles to individuals, has been used for varied 

purposes in epidemiology.  Where genetics affects behaviour (i.e. exposure) but can 

reasonably be assumed independent of confounders (whether measured or not), there is 

the potential to infer the causal exposure-disease relationship by using genotype as an 

instrumental variable (e.g. Didelez and Sheehan 2007, Lawlor et al. 2008).  Or, in rare 

situations where the biologically effective dose is an observable quantity, genotype can 

be used as an instrumental variable to estimate the relationship between biologically 

effective dose (also know as the intermediate phenotype) and disease. Thomas and Conti 
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(2004) emphasize such application when health outcome is measured on a continuous 

scale and point to some complications that arise when the disease state is binary. 

A parallel set of methodological developments apply to situations where genotype 

and exposure can be assumed independent, but a gene-environment interaction may arise 

via a relationship between genotype and the (unobservable) biologically effective dose.  

Methods that utilize the assumption of gene-exposure independence can more efficiently 

estimate the magnitude of the interaction than those which do not invoke the assumption 

(Umbach and Weinberg 1997, Chatterjee and Carroll 2005, Mukherjee et al 2007, 

Mukherjee and Chatterjee 2008). 

In yet another related line of inquiry, Burstyn et al. (2009), motivated by the study of 

Cherry et al. (2002), consider settings where gene and exposure can be assumed to be 

independent, and the lack of a main effect of gene in the model for disease given 

exposure and gene can also be assumed (i.e. gene alone does not confer disease risk in the 

absence of exposure).  They give a frequentist procedure for testing the existence of 

gene-exposure interaction, using gene and disease data only.  No detailed exposure data 

are used beyond an assumption that all subjects are exposed to some unknown extent by 

virtue of shared environment (e.g. occupation).  Such a procedure appears to be 

especially advantageous when exposure can only be assessed with error (Burstyn et al. 

2009). 

Focussing on the situation where all variables are binary, the objective of this work is 

to develop Bayesian methods for estimating gene-environment interaction, in the 

situation where information on exposure is disjoint from that on gene and disease.  That 

is, exposure is not determined for each subject, but knowledge at an ecological level is 
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available (e.g. exposure prevalence in the population).  The assumption of gene-exposure 

independence is exploited, as is the assumption that gene alone, in absence of exposure, 

does not cause the disease.  Both prospective and retrospective analyses are considered.  

We also explore the robustness of the proposed method to misspecified information on 

exposure prevalence, and provide comparison with analysis in which exposure is 

measured imprecisely for each subject.  Lastly, we investigate the sensitivity of the 

procedure to violation of the assumption that gene has no effect in absence of exposure.    

The method is illustrated using study data from Gu et al. (2005). 

2 Models and Theory 

2.1 General Framework 

Let Y be the binary outcome, X the binary exposure (or `environment’ variable), and G 

the binary `gene’ variable.  We consider situations where two key assumptions are 

defensible.  The first is that gene alone confers no additional disease risk in absence of 

exposure, so that the model 

logit Pr(Y=1|X,G) = !0 + !x X + !xgXG                                                  (1) 

is thought to hold in the population of interest.  The second is the Mendelian 

randomization assumption that X and G are independent of one another in the study 

population.  Logistical challenges in exposure assessment may imply that (Y,G,X) data 

are difficult or impossible to obtain (e.g. historical exposure over many years, important 

for a chronic disease, cannot be assessed with a reasonable degree of accuracy), whereas 

(Y,G) data are easier to obtain (e.g. genotyping subjects at time of diagnosis) and reliable 

information exists about the population prevalence of X, denoted as r hereafter.  
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Alternatively, perhaps (Y,X*,G) data can be obtained on individuals, where X* is an 

imperfect surrogate for X. 

From the point of view of testing the null hypothesis !xg = 0, Burstyn et al. (2009) 

illustrate through simulations that under the above two key assumptions, one can perform 

a valid test using (Y,G) data alone, since association between Y and G arises if and only 

if !xg " 0.  We follow this up by investigating, from an estimation point of view, the 

extent to which (Y,G) data are informative about !xg. 

2.2 Large-Sample Limit of the Posterior Distribution 

Our main theoretical, proof-of-concept investigation regarding information about !xg is as 

follows.  In addition to the two key assumptions, say that r is known.  For a given 

specification of prior distribution on !=(!0, !x, !xg) and a given set of true values for these 

parameters, we determine the posterior distribution arising from an infinite sample of 

(Y,G) data (but no observation of X values).  The extent to which this limiting posterior 

distribution (LPD) on !xg is narrower than the prior distribution on !xg then quantifies the 

extent to which (Y,G) data are informative about !xg.  Of course, the LPD represents the 

`best possible’ answer achieved in the limit of the sample size tending to infinity.  

Therefore, a wide LPD indicates futility in using (Y,G) data to infer the target !xg.  On the 

other hand, a narrow LPD indicates plausibility for inference, but does not directly 

address the secondary question of how quickly the posterior based on n data points 

narrows to the LPD as n increases. 

 We also note that the large-sample limit of inference based on (Y,G) data plus 

knowledge of the population exposure prevalence can be equivalently regarded as the 

limit of inference arising from data on (Y,G) and (X) marginally rather than (Y,G,X) 
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jointly (see Umbach and Weinberg 1997 for a discussion of a somewhat related 

“scrambled data” problem).  Of course, inference based on (Y,X,G) jointly will enjoy 

regular properties, such as the posterior on any parameter converging to a single and 

correct point as the sample size grows.  Consequently, our results can be regarded as 

describing how much information about !xg is lost when only (Y,G) and (X) marginal 

distributions are available. 

The evaluation of the LPD for !xg is somewhat involved in this setting, because 

regular asymptotic arguments do not apply.  The model for (Y|G) implied by model (1) 

plus knowledge of r is not identified, and consequently the posterior distribution for !xg 

does not concentrate to a single value as the sample size grows.  Therefore, we apply 

recently developed techniques for determining LPDs from non-identified models 

(Gustafson 2005).  The approach is based on reparameterizing in such as way as to 

separate parameters appearing in the likelihood function from those that do not.  The 

main features of the LPD are summarized as follows, with full details appearing in 

Appendix A, and R (R Development Core Team, 2007) code for LPD determination 

posted at www.stat.ubc.ca/~gustaf. 

We presume a prior under which the three components of ! are independent, with 

logit(!0) ~ Unif(0,1), while !x and !xg have mean-zero normal priors with standard 

deviations #x and #xg, respectively.  The choice of prior is uninformative with respect to 

disease prevalence, but admits prior suppositions that the magnitudes of X and XG 

effects on Y are unlikely to exceed investigator-specified thresholds.  Thus, we have an 

algorithm which takes as inputs r, the components (`true values’) of !, and 

hyperparameters #x and #xg; the output is the LPD for !xg.  Consequently, we see what 
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would happen if an infinite sample of (Y,G) values was generated under the input values 

of r and !, and the posterior distribution of !xg was formed from these data, assuming 

correct knowledge of r and using the prior distribution corresponding to the given 

hyperparameters.  Note that because we are investigating how informative knowledge of 

the (Y|G) distribution is for a parameter in the (Y|X,G) distribution, the LPD for !xg does 

not depend on the underlying prevalence of G in the population. 

The LPD determination is facilitated by reparameterizing from !=(!0, !x, !xg) to 

$=(p0, p1, q), where pi=Pr(Y=1|G=i) and q=expit(!0).  The salient features are as follows. 

1.  The determination can be carried out in two steps.  First, the prior conditional 

distribution of (q| p0, p1, r) is determined numerically.  From this, the prior conditional 

distribution of (!xg | p0, p1, r) follows via change of variables under a non-monotonic 

transformation of q.  The LPD is identically this conditional distribution evaluated at the 

true values of (p0, p1, r). 

2.  Assume, without loss of generality, that the true value of !xg is positive.  Then the 

LPD will have support [b, %), with b>0.  Thus, (Y,G) data plus knowledge of r can rule 

out small values of the gene-exposure interaction effect (including zero, in line with 

Burstyn et al., 2009), but not large values. 

3.  In the setting of an outcome that is not overly common even amongst the exposed, 

expressed as expit(!0 + !x) + expit(!0 + !x + !xg) < 1 (i.e., Pr(Y=1|X=1,G=0) + 

Pr(Y=1|X=1,G=1) < 1), the left-endpoint b can be expressed in terms of the true 

parameter values as 

        b = 2 logit[ {1 + expit(!0 + !x + !xg) - expit(!0 + !x) } /2 ],                     (2) 
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in the lower exposure prevalence case of r/(1-r) < 2expit(!0)/{ 1 - expit(!0 + !x ) - 

expit(!0 + !x + !xg)}.  When the exposure prevalence exceeds this threshold, the 

commensurate expression is  

b = logit[ {(1-r)/r}expit(!0) + expit(!0 + !x + !xg) ]  - 

                   logit[ {(1-r)/r}expit(!0) + expit(!0 + !x ) ].                             (3) 

It is interesting to note that (2) does not depend on r, and that (3) tends to !xg as r tends to 

one.  The interpretation is that whereas !xg itself is not completely determined by (p0, p1, 

r), expressions (2) and (3) provide a lower bound for !xg which is completely determined 

by (p0, p1, r).  Thus, the tightness of this bound will be one key part of how well (Y,G) 

data plus knowledge of r inform the target parameter. 

4.  Still in the `not too common outcome’ setting, we have the following general finding 

about the shape of the LPD.  In the lower prevalence case with left endpoint b defined by 

(1), the LPD density will be infinite at b.  Thus, there is a tendency for the posterior to put 

a lot of weight near b, which is a further mechanism by which the LPD for !xg can be 

informative. 

Some specific cases of the LPD for !xg are given in Figure 1.  Here #x=1, while 

several values for each of r, #xg, !0, !x, !xg are considered.  Each LPD is summarized by 

its 0-th, 50-th and 95-th percentiles, i.e. the 0-th percentile is the left-endpoint b described 

above.  We first observe that there is little difference between the 50-th percentile of the 

LPD and true value of !xg in all cases.  Next, as expected, the 0-th percentile of the LPD 

is positive in all cases.  This implies that with sufficient data one could infer that the 

gene-environment interaction exists.  Absence or presence of a main effect of exposure 
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(!x =0 or !x = 0.2) has a negligible effect on the width of the LPD for !xg, and the impact 

of changing the hyperparameter (#xg =1 or #xg = 2) is also quite slight.  Overall, the LPD 

for !xg tends to be wider when exposure and outcome are rarer, though the theoretically 

predicted effect of lower exposure prevalence on the shape of the LPD is also clearly 

manifested. 

2.3 Knowledge of Exposure Prevalence 

The LPDs presented in Figure 1 arise when the investigator correctly knows r, the 

population prevalence of exposure.  To examine robustness to the specification of r, we 

also present some LPDs which arise when the investigator specifies an incorrect value.  

That is, whereas the true value of r plays a role in determining the observable (Y,G) 

relationship, the investigator-assumed value of r is used to calculate the LPD for !xg 

arising from the (Y,G) relationship.  Results for selected underlying parameter values 

appear in Figure 2.  Note that several underlying values for !0 are considered.  Results for 

alternate values of !x and !xg are qualitatively similar to those presented, and hence these 

are not shown. 

The findings from Figure 2 are mixed.  In some cases the LPD is somewhat 

insensitive to a misspecified value of r (e.g. with a higher true value of r and a lower 

value of !0), and in some cases it is highly sensitive (e.g. with a lower true value of r and 

a higher value of !0).  In practice, of course, information about r would likely be provided 

in the form of a prior distribution, rather than a single value that is assumed to be correct, 

which may guard against erroneous conclusions due to one poor guess of r by 

appropriately inflating the posterior of !xg.  However, our findings suggest that such a 
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prior would need to be both reasonably narrow and consistent with the true value, in 

order to obtain useful and reliable inference about !xg from (Y,G) data alone. 

2.4 Impact of Exposure Misclassification 

One motivation for considering inference based on (Y,G) data only is that it may not be 

possible to measure exposure X well.  Indeed, exposure misclassification in the gene-

environment context has been discussed by a number of authors, including Wong et al. 

(2003, 2004) and Zhang et al. (2008).  To explore the issue in the present context, we 

consider what happens when model (1) is fit to (Y,X*,G) data rather than (Y,X,G) data, 

where X* is a misclassified surrogate for X.  In particular, say X* is a non-differential 

surrogate (i.e. conditionally independent of Y and G given X), characterized by its 

sensitivity, SN=Pr(X*=1|X=1), and specificity, SP=Pr(X*=0|X=0).  To evaluate the 

impact of unacknowledged misclassification then, we examine the discrepancy between 

coefficients from logistic regression of Y on (1, X*, X*G) and coefficients arising from 

logistic regression of Y on (1, X, XG). 

 In Appendix B we outline a simple, but approximate, approach to determining the 

discrepancy between coefficients, as well as a computational approach to determining the 

discrepancy exactly (i.e. computing the large-sample limit of the estimated coefficients 

when an intercept plus X* and X*G terms are fit).  The approximate calculation indicates 

that both the X* and X*G coefficients will be attenuated toward zero compared to the X 

and XG coefficients in the true relationship.  Moreover, the multiplicative attenuation 

factor in both cases will be (PPV + NPV - 1), where PPV = Pr(X=1|X*=1) = 

rSN/{rSN+(1-r)(1-SP)} is the positive predictive value of the exposure classification, and 

NPV = Pr(X=0|X*=0) = (1-r)SP/{(1-r)SP+r(1-SN)} is the negative predictive value.  
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While attenuation of coefficients commonly results from exposure misclassification (see, 

for instance, Gustafson 2004, Ch. 3), we emphasize that the approximate attenuation 

factor of (PPV + NPV - 1) is obtained via the two key assumptions stated in 2.1, and 

hence is particular to the present setting.  Note also that for fixed sensitivity and 

specificity, low exposure prevalence r will induce low PPV.  Thus, we expect to see 

severe attenuation in the rare exposure case.  It should also be noted that the calculations 

in Appendix B reveal that misclassification induces a main effect of gene, i.e. the lack of 

a main effect for G in the (Y|X,G) relationship does not guarantee the lack of a main 

effect for G in the (Y,X*,G) relationship. 

Figure 3 displays the exactly computed attenuation in a variety of settings, and 

these values agree quite closely with the approximate attenuation factor.  The attenuation 

is confirmed to be particularly severe when the population prevalence of exposure is low.  

To be clear, note that ignoring misclassification corresponds to fitting an identified but 

misspecified model, i.e. the posterior distribution on regression coefficients will shrink to 

a single point as the sample size grows, but it will be the wrong point.  Therefore, 

inference about the true gene-exposure interaction effect which ignores the 

misclassification will be both biased in terms of where the posterior distribution is 

centered, and falsely precise in terms of the width of the posterior distribution. 

At least indirectly, the impact of misclassification of X seen in Figure 3 can be 

compared to the impact of misspecified r in Figure 2.  In particular, we can consider an 

assumed value of r that arose from the population prevalence of X* (whereas the true 

value of r is by definition the population prevalence of X).  That is the assumed value r* 

and the true value r are linked via r* = r SN + (1-r)(1-SP).  For instance, when r=0.1, 
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SN=SP=0.9 yield r*=0.18, and SN=SP=0.8 yield r*=0.26.  Similarly, when r=0.25, 

SN=SP=0.9 yield r*=0.30, and SN=SP=0.8 yield r*=0.35.  Via this link, comparison 

between Figures 2 and 3 shows that mistaken knowledge about exposure prevalence in 

the (Y,G) data analysis is less damaging than unchecked misclassification of exposure in 

the full analysis based on (Y,X*,G) data. 

Of course, the most desirable strategy in the face of (Y, X*, G) data would be to 

explicitly recognize the misclassification, and `adjust’ for it in the analysis.  To do so, 

however, requires knowledge about the nature and extent of misclassification, say via a 

prior distribution on (SN,SP), and assumptions about the extent to which the 

misclassification might be differential.  In some situations such knowledge may be very 

difficult to acquire, whereas reasonable estimates of population exposure prevalence may 

be readily available. 

2.5 Impact of Incorrectly Assuming that Gene Does Not Confer Risk of Disease 

Suppose that the assumption in model (1) is wrong in a sense that a main effect, perhaps 

small, of G (i.e. a !gG term with !g " 0) is missing.  For instance, such a main effect 

might arise if an unobserved exposure acts via G to cause Y.  In practice, there could be 

lingering doubt about biological mechanisms and the possible presence of unobserved 

exposures that cause the disease of interest and whose risk is also modified by the given 

genotype.  To consider the impact of a small gene effect which is missed in the analysis, 

we consider the LPD arising under the assumption that !g=0 when the true value is non-

zero.  In particular, Figure 4 reproduces the settings in Figure 1, but with true relationship 

involving a main G effect of !g=0.025. 
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An unacknowledged main effect of G is seen to be very damaging, even though 

the magnitude of this effect is small.  For instance, in some cases in Figure 4 the left 

endpoint of the LPD (b) lies above the true value of !xg.  Thus, it seems inadvisable to 

make the assumption that gene alone does not confer risk unless it is strongly warranted 

and supported.  Further evidence along these lines is as follows.  Say model (1) is fit to 

cohort data, when in fact the true relationship involves !g " 0 (hence the fitted model is 

violated) as well as !xg = 0 (so that in fact there is no gene-environment interaction).  In 

Appendix C we give a Taylor series argument to show that, at least approximately, all of 

the main effect of G in the true relationship is transferred to a spurious effect of XG in the 

fitted relationship.  This again speaks to the method being non-robust to violations of the 

assumption that G alone confers no risk. 

3 Extension to Retrospective Analysis 

The theoretical results in Section 2 are given in the framework of a cohort study, i.e. they 

describe what happens when an infinitely large sample of (Y,G) values are drawn from 

the study population.  Given the well established approach of analyzing retrospective data 

as if they were prospective, we might anticipate that the findings are relevant to case-

control studies as well.  However, there are reasons to consider `fully retrospective’ 

analysis in the present context.  In particular, when (Y,X,G) data are analyzed 

prospectively with model (1), the supposition that X and G are independent does not 

come into play (as emphasized by Chaterjee and Carroll 2005, for instance).  That is, the 

same logistic regression fit of (1) would result whether or not one assumed this 

independence.  However, the assumption matters when retrospective analysis is applied.  

That is, starting with a model for (Y|X,G), the model arising for (X,G|Y) will differ 
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depending on whether or not X and G are assumed independent in the population.  In 

particular, the literature cited in Section 1 points to efficiency gains in inference when the 

assumption is appropriately made. 

Given this, it also seems important to consider a properly retrospective analysis in 

the case of having (Y,G) data only.  It no longer seems feasible to study the large-sample 

limiting behaviour as was done in the prospective case.  However, Bayesian analysis for 

finite samples is readily implemented, for both full (Y,X,G) data and reduced (Y,G) data.  

Modelling and implementation details for these analyses appear in Appendix D. 

4 Illustrative Example: Bladder Cancer, Cigarette Smoking and NAT2 

Genotype 

To give an empirical illustration, we analyze the data from a bladder cancer study 

published by Gu et al. (2005).  The version of the data we use is for the NAT2 genotype 

(G=1 corresponds to slow acetylator), with exposure X being heavy-smoking (compared 

to never or light smoking), from their Table 3.  The pertinent data summaries are 

reproduced here in Table 1.  We re-analyze these data using both prospective and 

retrospective Bayesian analysis.  We also consider both full and reduced data.  The full 

data are simply the (Y,X,G) data.  The reduced data are the (Y,G) data along with 

information on the population prevalence of X.  For illustrative purposes, this information 

is taken directly from the data at hand, i.e. the observed exposure status of controls is 

used to inform the prior specification r  ~ Beta(c+1,d+1), where c=110 and d=402 are the 

counts of exposed (X=1) and unexposed (X=0) controls.  Thus, we mimic a situation 

where we have (Y,G) data on a different set of subjects than those for whom we have X 

data.  The priors we use are logit(!0) ~ Unif(0,1), !x ~ N(0,1), !xg ~ N(0,1).  Again, the 
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first specification is intended to be uninformative about the disease prevalence.  

(Incidentally, we see almost no prior-to-posterior updating of !0 under the retrospective 

analysis, in accord with intuition.)  The latter two specifications are made in light of 

exp(±2) being extreme odds ratios in the present context. 

The posterior distributions on !xg arising from each analysis appear in Figure 5.  

Immediately we see that these data yield indistinguishable results under prospective and 

retrospective analysis, notwithstanding the discussion in Section 3.  The fact that the full-

data analyses are virtually the same both retrospectively and prospectively, despite the 

former making using of the Mendelian randomization assumption, is perhaps slightly 

surprising in view of the literature.  However, Umbach and Weinberg (1997) consider a 

saturated eight-parameter log-linear model for cell counts arising without the assumption 

to an unsaturated seven-parameter model with the assumption.  In the present instance, 

however, we are also assuming that there is no main effect of G in the disease model.  

Thus, in the log-linear model framework the comparison is now between two unsaturated 

models with seven and six parameters, respectively.  Since the assumption of no main 

effect of G alters the nature of the models being compared, we do not necessarily expect 

the findings of Umbach and Weinberg (1997) to apply in the present setting.  We also 

note that our full-data estimate of !xg is somewhat attenuated compared to that reported 

by Gu et al. (2005).  This is likely the result of the prior distribution used here, compared 

to the non-Bayesian analysis in the original publication. 

The reduced-data posterior is considerably more concentrated than the prior, but 

considerably less concentrated than the full-data posterior.  Both provide strong evidence 

for a gene-environment interaction, with posterior probability of !xg < 0 on the order of 

 16



0.03 with reduced data, and 0.001 with full data.  In line with our theoretical findings, we 

see that the reduced data are effective in providing evidence against smaller values of !xg 

(above and beyond providing evidence against the null value).  On the other hand, the 

right-tail of the posterior seems to fall in step with the prior, i.e. in this particular example 

it appears that the prior distribution is relied upon to provide evidence against rather large 

values. 

5 Discussion 

In the context of binary variables, we have considered the setting where Mendelian 

randomization of genetic traits is known to hold (i.e. X and G are independent), and that 

gene is known not to convey increased disease risk in the absence of exposure (i.e. the 

distribution of Y|X=0,G=g does not depend on g).  We have seen that in this setting the 

distribution of Y|G and the distribution of X are partially informative for the distribution 

of Y|X,G.  In particular, there is some scope for learning about a gene-environment 

interaction from a gene-disease study augmented with external (i.e. ecological) 

knowledge about the exposure.  This partial information has been characterized 

theoretically via the limiting posterior distribution on the gene-exposure interaction 

coefficient.  We also gave an example of accessing this information from real case-

control data, both with the pretence of modeling the data prospectively and by using 

retrospective analysis.  We showed that information lost when data are scrambled, i.e. 

(Y,G) and (X) data are disjointed, can be partially recovered through an analytical 

strategy that takes advantage of biologically justifiable assumptions.  Whereas there is an 

existing literature on using the assumption of gene-exposure independence to improve the 

efficiency of the estimators for gene-environment interaction from case-control studies, 
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this is apparently the first work to consider using the assumption to help mitigate a lack 

of individual-level information about either exposure or the even harder to measure 

biologically effective dose. 

The procedure we propose is especially advantageous when exposure is common, as 

would be the case in risk-enriched cohorts, such as those assembled in workplaces, where 

is possible to select subjects in such a way that nearly all of them are “exposed” (or in the 

case of continuous exposure, most are exposed to some non-negligible extent).  However, 

even in such settings the efficiency deteriorates for rare outcomes.  One of the pivotal 

strengths of the proposed method is its partial robustness to misspecification of exposure 

prevalence, and the fact that it is certainly preferable to ignoring misclassification of 

exposure in analysis.  This is important because measurement error in exposure is 

recognized as one of the main threats to efficiency of gene-environment interaction 

studies in epidemiology (Davey Smith and Ebrahim 2003, Vineis 2004, Burstyn et al. 

2009).  Furthermore, the method we propose may indirectly mitigate the concern about 

spurious associations due to multiple comparisons that plague many gene-environment 

interaction studies (see for example Wakefield et al., 2009).  Specifically, our method 

promotes hypothesis-driven analysis and study design that focuses on just a few 

associations for which the key assumptions can be supported. 

The method we developed is vulnerable to violations of the two fundamental 

assumptions.  The conditions under which Mendelian randomization of genetic traits is 

violated were extensively discussed by Davey Smith and Ebrahim (2003).  Although not 

formally addressed here, it is clear that inter-dependence of genetic susceptibility and 

exposure would invalidate the proposed method.  As well, it may be challenging to rule 
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out a direct effect of gene on disease.  Unfortunately, it would appear that even a small 

direct effect of gene on disease biases inference about gene-environment interaction.  

Therefore, for our proposed method to apply, it is paramount to ensure during the design 

of a study that an effect of gene on the disease in absence of exposure can be ruled out 

with reasonable certainty.  It should be mentioned that the related problem of using gene 

as an instrumental variable to deal with confounding, mentioned in Section 1, also 

invokes an assumption that gene does not directly influence disease.  A commensurate 

lack of robustness to violation of this assumption is seen in that setting as well. 

The applicability of our approach for disease, exposure and gene-environment 

interaction models other than those considered here (even when the two key assumptions 

are satisfied) all constitute fruitful future directions of research.  However, given that 

there is always uncertainty about model specification, our methodology offers clear 

practical approach to studying gene-environment interactions when the two key 

assumptions can be invoked. 
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Appendix A: Limiting Posterior Distribution in the Prospective Analysis 

The LPD for !xg when r is known can be determined via a two-step procedure.  First, we 

re-parameterize from !=(!0, !x, !xg) to $=(p0, p1, q), where pi=Pr(Y=1|G=i) and 

q=expit(!0).  More specifically, note that  

p0 = (1-r) expit(!0) + r expit(!0 + !x),                                                    (4) 
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p1 = (1-r) expit(!0) + r expit(!0 + !x + !xg).                                               (5) 

Note also that this mapping is explicitly invertible, via  

  !0 = logit(q)                                                                                              (6) 

    !x = logit[r-1{p0  - (1-r)q}] – logit(q),                                                      (7) 

!xg = logit[r-1{p1  - (1-r)q}] – logit[r-1{p0  - (1-r)q}].                              (8) 

Moreover, the Jacobian of the mapping (in either direction) is readily determined.  Thus, 

starting with a specified prior density for !, it is straightforward to compute the prior 

density for $.  In turn, this yields the prior conditional density for (q | p0, p1).  This 

conditional distribution, evaluated at the true values of (p0, p1), characterizes the 

uncertainty which remains about $ after observation of an infinite (Y,G) sample.  It is 

important to note that the support of the prior conditional for q may be smaller than the 

unit interval.  In particular, say without loss of generality that p0 < p1.  Then, from the 

form of the mapping above we have the support as max{0,q0} < q < min{q1,1}, where q0 

= (1-r)-1(p1-r) and q1= (1-r)-1p0.  This speaks to knowledge of parameters inside the 

reduced-data likelihood function, p0 and p1, being able to impart some information about 

the parameter q not involved in the likelihood. 

 The second part of the calculation is to determine the conditional prior for (!xg | 

p0, p1) from the conditional prior for (q | p0, p1).   This is straightforward since given (p0, 

p1) we have !xg = h(q), where h(q) is defined by (8) and can be re-expressed as  

                            h(q) = logit{s – k(q-q*)} + logit{ s + k(q-q*)}, 

where s = ½ + (p1-p0)/(2r),  k=(1-r)/r, and q*=(q0 + q1)/2.  Upon noting that h() is 

symmetric about, and minimized at, q* , we have 
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    Pr{ q* - &  <  q  <  q* + & | p0, p1} = Pr{!xg < logit(s - k&) + logit(s + k&) | p0, p1},  

which allow computation of the prior conditional distribution for !xg from the prior 

conditional distribution for q. 

 To gain further qualitative insight, we specialize to the situation where q* lies 

below the true value of q.  Translated back to the original parameters, this condition is 

expressed as expit(!0 + !x) + expit(!0 + !x + !xg) < 1, which corresponds to an outcome 

which is not too common.  Then we have that q* is positive when  

    r/(1-r) < 2expit(!0)/{1- expit(!0 + !x) + expit(!0 + !x + !xg)},                (9) 

and negative when the inequality is reversed.  In the former case then, the LPD for !xg 

must have h(q*) as the left-endpoint of its support.  Expressing h(q*)  in terms of the 

original parameters then directly gives the left-endpoint b expressed in equation (2).  Also 

in this case, the fact that h'(q*)=0 implies immediately that the density of the LPD will be 

infinite at b.  Conversely, in the case that r is sufficiently large to violate (9), the left-

endpoint must be h(0), which translates to equation (3). 

Appendix B: Misclassification of Exposure at the Individual  Level 

Say that model (1) holds, and that X and G are independent.  Also, say that X* is a non-

differentially misclassified surrogate for X.  Approximately, then: 

     Pr(Y=1|X*,G) = E{ Pr(Y=1|X,G) | X*, G } 

                            = E { Pr(Y=1|X,G) | X* } 

                            ( expit[ E{ logit Pr(Y=1|X,G) | X* } ] 

                            = expit{ !0 + (!x + !xgG) E(X|X*) } 
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                           = expit[ !0 + (!x + !xgG){ (1-NPV) + (PPV+NPV-1) X*} ] 

                           = expit[ {!0 + !x(1-NPV)} + {!x(PPV + NPV -1)}X*  + {!xg(1-NPV)}G + 

                                        {!xg(PPV + NPV – 1)}X*G  ]. 

Thus, we see that both the X* and X*G coefficients are attenuated by a factor of (PPV + 

NPV - 1) relative to the X and XG coefficients in the true relationship.  We also see the 

spurious introduction of a main effect for G.             

 More formally now, let ) = ()0, )x, )xg) be the large-sample limit of coefficients 

resulting from the logistic regression of Y on (1, X*, X*G).  In passing we note that this 

will in fact be a misspecified model, particularly because the misclassification will induce 

a main effect for G even though it is absent in the true relationship for (Y|X,G).  

Nonetheless, we can define ()0, )x, )xg) via 

E [{Y-expit()0 + )xX* + )xg X*G)} (1,  X*,  X*G)' ] = 0. 

Upon noting that 

E{Y(1  X* X*G)'} = E[Y{1,  (1-SP) + (SN+SP-1)X,  (1-SP)G+(SN+SP-1)XG}]', 

and that by definition 

E{Y(1, X, XG, G)'} = E { expit(!0+!xX+!xg) (1, X, XG, G)' }, 

we have ) as a function of ! via 

   E {expit()0 + )xX* + )xg X*G) (1,  X*,  X*G)' } =  

  E[expit(!0+!xX+!xgXG)  {1, (1-SP)+(SN+SP-1)X,  (1-SP)G+(SN+SP-1)XG}'].     (10)  

Given !, we can solve (10) for ) numerically.  In particular, the derivative of the left-

hand side with respect to ) is readily computed, so that the Newton-Raphson algorithm 
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can be applied.  Here, the attenuation of inference on the exposure-gene coefficient, given 

by )xg/!xg, is of interest. 

Appendix C: Violation of the  Gene-Exposure Independence Assumption 

Say that the true relationship is given by logit{Pr(Y=1|X,G)}= )0 + )xX + )gG, whereas 

(!0, !x, !xg) are the large-sample limiting coefficients arising from fitting model (1).  Thus 

! is determined from ) according to 

 E[{expit()0 + )xX + )gG) – expit(!0 + !xX + !xgXG)} (1, X, XG)'] = 0. 

If we fix ()0, )x), differentiate this expression with respect to )g, and evaluate the 

resulting expression at )g=0 we obtain 

E {expit'()0 + )xX) (1, X, XG)' (1, X, XG)}v = E {expit'()0 + )xX) (G, XG, XG)' }, 

where v is the derivative of ! with respect to )g, evaluated at )g = 0.    Upon taking 

expectation with respect to G (under the assumption that G and X are independent), the 

solution to this equation is seen to be v = (E(G), –E(G), 1)'.   In particular, the derivative 

of !xg with respect to )g, evaluated at )g, is one.   Locally then the spurious interaction 

coefficient in the fitted relationship is the same as the main effect of G in the true 

relationship.  

Appendix D: Retrospective Analysis 

Let pxgy be the proportion of the study population with (X=x, G=g, Y=y).  Under the two 

key assumptions we have:  

    pxgy = rx(1-r)1-x tg(1-t)1-g {expit(!0 + !xx + !xgxg)}y{1 - expit(!0 + !xx + !xgxg)}1-y, 
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where r and t are population prevalences of X and G, respectively.  Thus, the parameter 

vector is comprised of (r, t, !), and in contrast to the prospective analysis, prior 

distributions are required for r and t, in addition to !.  Absent of substantive information, 

each prevalence might be assigned Unif(0,1) prior distributions.  The joint prior on the 

parameter vector is informed by the (X,G) data for controls which arise via multinomial 

sampling with cell probabilities (pxg0 / p••0), and the corresponding data for cases having 

cell probabilities (pxg1 / p••1).  (Here the ‘dot’ notation indicates summation.)  Note that 

without the assumption of exposure-gene independence, a further parameter would be 

required, with the corresponding potential for less efficient estimation. 

 This approach is easily adapted to the reduced-data situation involving an 

informative prior for r along with (Y,G) case-control data.  This informative prior would 

be encoded as part of a joint prior on unknown parameters (r, t, !).  This prior is then 

updated via a binomial sampling model for G amongst controls and cases, with 

Pr(G=1|Y=y) = (p•1y / p••y).  R code implementing both the full-data and reduced data 

retrospective analyses via Markov Chain Monte Carlo with random walk proposals is 

posted at www.stat.ubc.ca/~gustaf. 



controls (Y = 0) cases (Y = 1)
G = 0 G = 1 G = 0 G = 1

X = 0 172 230 106 156
X = 1 58 52 83 157

Table 1: Data from Gu et. al. on the effect of NAT2 genotype and smoking status on bladder
cancer risk. Genotype is coded as 0=rapid acetylator, 1=slow acetylator. Smoking status is
coded as 0=never/light, 1=heavy.
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Figure 1: LPD for βxg. The top (bottom) panels correspond to true values βxg = 0.1 (βxg = 0.3).
The left (right) panels correspond to hyperparameters σxg = 1 (σxg = 2). Within each panel,
all combinations of β0 = logit0.1, logit0.5, βx = 0, 0.2, r = 0.1, 0.4 are considered. In each case,
! in the legend indicates the second of the two values. The 0th, 50th, and 95th percentiles of
the LPD are displayed. The open circles indicate cases where the LPD has infinite density at
the 0th percentile. The dotted horizonal lines indicate zero and the true value of βxg.
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Figure 2: LPD for βxg when the value of r is misspecified. The LPD is displayed as per Figure
1 (0th, 50th, 95th percentiles). True parameter values are fixed at βx = 0.2, βxg = 0.3 and
either β0 = logit0.1 (top panels) or β0 = logit0.5 (bottom panels). The hyperparameter setting
is σxg = 1. In each panel the LPDs for various assumed values of r = Prev(X) are given, with
the correct value being r = 0.1 (left panels) or r = 0.25 (right panels). Cases where the assumed
and true prevalences match are highlighted.
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Figure 3: Attenuation in estimating βxg when nondifferential misclassification of X is ignored.
The true value of βxg is set at 0.3, though results are similar for other values. The attenuation is
reported as a ratio of estimated value (in the large sample limit) to true value. Settings for r, β0,
βxg are as per Figure 1. In some cases the attenuated estimate is lower than the corresponding
left endpoint of the LPD reported in Figure 1.
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Figure 4: LPD for βxg when the assumption of no main effect for gene is violated. All settings
are as per Figure 1. While the model still assumes (1), the true relationship additionally involves
a main effect of G, with βg = 0.025.
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Figure 5: Posterior distribution on the interaction coefficient βxg for the bladder cancer study.
The top (bottom) panels correspond to prospective (retrospective) analysis. The left (right)
panels correspond to reduced (full) data. The superimposed curve is the prior density.
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