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Time-varying Markov models for dichotomized
temperature series.
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This paper uses high-order categorical non-stationary Markov chains to study the occurrence
of extreme temperature events, in particular frost days. These models can be applied to estimate
such things as the probability that a given period is frost-free, the probability that a given day
begins a long frost-free period within a year and the distribution of the length of the frost-free
period. Several stationary and non-stationary high-order (yet parsimonious) Markov models are
proposed and compared using AIC and BIC. Partial likelihood theory is used to estimate the
parameters of these models. We show that optimal (in terms of AIC/BIC) non-stationary Markov
models that have constant “Markov coefficients” (across the year) are not adequate to estimate the
aforementioned probabilities. Therefore this paper develops Markov models with a time-varying
periodic structure across the year. A challenge in fitting these models (by maximizing the partial
likelihood) is the large number of parameters. The paper presents a method for overcoming
this challenge, one that uses parametric fits to the logit of the nonparametric estimates of the
transition probability to initialize the optim function in the R package. Satisfactory results are
shown to obtain from this approach. The work is applied to temperature records for the Province
of Alberta, Canada.

Key Words: Time-varying Markov Coefficients; Time series; Categorical Markov chain; Partial
likelihood; Frost; Minimum temperature.

1 Introduction

This paper applies an rth-order categorical non-stationary Markov chain theory developed in

Hosseini et al. (2011b) to find models for extreme temperature events. It extends the models developed

in Hosseini et al. (2010) for extreme temperature events to a more general framework which allows

the Markov structure vary with time (season). A fundamental premise is that temperature itself, which

could in some cases be handled by Gaussian space-time models, is not of specific interest. Instead its

dichotomized values play the central role. For example in agroclimate risk analysis and management,

the genesis of this paper, any temperature below zero destroys crops in certain periods of the crop

growth. In fact, this paper only treats the case of low temperatures but the same techniques can be

applied to high temperature above a critical threshold and this issue is considered in Hosseini et al.
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(2010). Note that by not unnecessarily specifying a full process model we gain some robustness

against model misspecification say in contexts where a Gaussian model may not be appropriate.

Although the modeling strategy in this paper is used for binary temperature series, the same ap-

proach can be used for other climatological events, and in fact it was used for precipitation in Hosseini

et al. (2011a). Likelihoods developed in this way can play a role in setting crop insurance premiums

and managing irrigation programs, which are attaining increasing importance as the climate changes.

In fact weather derivatives, which may be created as part of a risk management insurance program,

can be written in terms of the attainment or non attainment of specific target-values stipulated in the

contract. The models developed in this paper can be applied to estimate such things as: the probability

that a given period is frost-free; the probability that a given day is the start of a long frost-free period

within a year; the distribution of the length of the frost-free period and so on. By dichotomizing the

minimum daily temperature process at 5 degrees the same methodology can be used to compute the

probability that a given day of the year is the beginning of the growing season (the first day that the

mean temperature is higher than 5 degrees for 5 consequent days) as well as the length of the growing

season which are important for agricultural applications.

Calculating the probability of events, which are defined using the data over all the year, is not

feasible by simply looking at their observed probability over the previous years. There are various

reasons for this. Often only a few years of data are available and every year can only be considered

as a single data point using such naive procedures. Sometimes only a few missing data points will

prevent us from using the rest of the available data during that year. It is unrealistic to assume years

are independent and identical observations of the same finite chain of length 365 (or 366) because

long-term trends can be present in the temperature process (e.g. due to climate change) and also the

end of one year is obviously correlated highly with the beginning of the next. Moreover, a strong

seasonality effect may be present in the temperature process. For example the probability that April

1st is a frost day should be very similar to April 2nd. In other words a lot of strength can be borrowed

in predicting the status of April 2nd status using the April 1st data.

Throughout this paper, temperature is measured in degrees Celsius. Let us denote the minimum

temperature series by {mt(t)}, t = 0,1,2, · · · , where t denotes time. We call day t with mt(t) ≤ 0, a

“frost day” and define a binary process Y (t):

Y (t) =

1 mt(t)≤ 0 (deg C)

0 mt(t)> 0 (deg C).

Taking 0 (deg C) to be the cut-off for low temperature seems reasonable in the absence of any other

considerations, since that is the usual definition of a frost. In agriculture, where most plants contain a

lot of water this can be considered as an important cut-off.

In order to study extreme events (e.g. for mt) three approaches are possible among other methods.

First, fit the continuous-valued process using a Gaussian distribution. However in the tails, usually
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of paramount concern, the fit does not do well as shown by the qq-plots in Hosseini et al. (2009).

Second, use a specified threshold and model the values exceeding the threshold. However with this

approach, we cannot answer the question about how often or in what periods of the year the extremes

happen. This is because we model only the actual extreme values and ignore the non-extreme values.

Moreover we need to pick the threshold high (or low) enough to make the extreme-value theory results

approximately hold. This might not be an optimal threshold from a practical point of view. Third,

based on practical needs, use a threshold to define a new binary process for [extreme]/[not extreme]

realizations and model the binary process. This is the method we use as it does not have the issues

mentioned in connection with the first two approaches because the threshold is not taken to satisfy a

mere statistical requirement. In fact, we make few assumptions about the binary chain.

We use high-order non-stationary Markov models as a natural framework for modeling the min-

imum temperature occurrence process. But what form should the model have and what is the order

of the chain? We use a representation of these chains, Hosseini et al. (2011b), which is quite general

(makes no restricting assumptions about the chain), while being suitable for statistical estimation due

to its linear form in the coefficients (Appendix). As it is evident from the representation, in general,

the Markov structure (both the intercept and Markov coefficients) can change with time (season) and

one need to accommodate that in modeling. This is shown to be an important feature to capture the

frost process properties in the data used here. Moreover this modeling framework enables us to come

up with parsimonious models by restricting the number of terms (or assuming some are equal) in the

linear representation as shown in Hosseini et al. (2011a). Also this framework can easily accommo-

date other exogenous variables, if needed, by adding terms to the linear representation; a feature we

did not need for this work but can be quite useful in many applications.

The problem with increasing the order of a Markov chain is the exponential increase in number

of parameters in the model. For modeling precipitation occurrences as a special case, Hosseini et al.

(2011a) propose models that increase with the order of the Markov chain by using only 1 extra pa-

rameter. They even propose high-order Markov models with only 2 parameters by considering the

number of precipitation days in a specified period prior to the date of interest. Several stationary

and non-stationary high-order (yet parsimonious) Markov models are proposed and compared using

AIC/BIC. Partial likelihood theory is used to estimate the parameters of these models. To elaborate,

let {Yt}, t = 1,2,3, · · · be a categorical Markov chain of order r with conditional probability given by

P(Yt = yt |Yt−1 = yt−1, · · · ,Yt−r = yt−r),

which we also denote by pyt−r···yt−1yt (t). For example p01(t) = P(Yt = 1|Yt−1 = 0) is a 1st-order transi-

tion probability curve for a 1st-order Markov chain. The Categorical Expansion Theorem (Appendix

A) provides a representation for the conditional probabilities and therefore the chain, in terms of

linear combinations of monomials of past processes (e.g. yt−1,yt−2,yt−3,yt−1yt−2). Parsimonious

models are obtained by restricting the number of terms in the linear representation of the conditional
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probability. For the binary precipitation occurrence chain, other parsimonious models are obtained

by considering covariates such as N7(t−1) = ∑
7
i=1Y (t− i) which counts the number of precipitation

days in a week prior.

Other papers that address parsimonious high-order categorical Markov models include Raftery

(1985), Bühlmann et al. (1999), Jacobs et al. (1983) and Weiß (2011). Suppose {Yt} is a stationary

rth-order Markov chain taking values in {1,2, · · · ,m}. Then the model in Raftery (1985) is given by

P(Yt = j0|Yt−1 = j1, · · · ,Yt−r = jr) =
r

∑
i=1

λiq j0 ji ,

where λ1 + · · ·+λr = 1 and Q = {q jk} is a non-negative m×m matrix with column sums equal to 1,

such that

0≤
r

∑
i=1

λiq jki ≤ 1, ( j,k1,k2, · · · ,kr = 1, · · · ,m).

Estimation is done by a constrained maximum likelihood method. In Bühlmann et al. (1999) variable

length markov chain (VLMC) models are proposed where the portion of the past that influences the

next outcome depends on the history of the chain. In Jacobs et al. (1983) the authors propose DARMA

and NDARMA processes which mimic the definition of ARMA processes for continuous-valued time

series. Weiß (2011) extends these models to the new class of generalized choice (GC) models which

include NDARMA models as a special case. The main limitations of the aforementioned models

are: including exogenous (continuous) covariates is not possible; not much work has been done on

extending these models to non-stationary chains with a complex non-stationary nature. The models

proposed in this paper overcome both of these limitations.

Another relevant class of models are Hidden Markov Models. For example Hughes et al. (1999)

describe a hidden Markov model which relates unobserved broad-scale atmospheric circulation pat-

terns to local rainfall. A comparison between the performance of high-order Markov models and

hidden Markov models in describing weather patterns such as frost or precipitation occurrence would

be desirable in future work but is not considered further here.

Fahrmeir et al. (1987), Kaufmann (1987) and Fokianos et al. (2003) present regression models

for non-stationary categorical time series. These models extend generalized linear models for inde-

pendent data to the case of temporally dependent data. To be more precise, let {Yt}, t = 1,2, · · · be a

binary Markov chain of order r with observations denoted by {yt}. Then Fahrmeir et al. (1987) model

the conditional probabilities πt by

πt = h(β0 +β1yt−1 +β2yt−2 + · · ·+βryt−r + γ1xt1 + · · ·+ γkxtk), t > r,

where β0, · · · ,βr,γ1, · · · ,γk are unknown parameters and the link function h is a one-to-one mapping

from a subset D ⊂ R to (0,1) e.g. the logistic distribution function. Then the observations {yt} form

a Markov chain of order r, which is generally non-homogenous since πt depends on exogenous vari-
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ables x1t , · · · ,xtk. We call yt−1, · · · ,yt−r Markov Coefficients. This paper extends the above model

by allowing the Markov coefficients β1, · · · ,βr to vary with time and more specifically with season.

An empirical demonstration shows this extension to be necessary to get adequate fits. In fact we

show that optimal (using AIC/BIC) non-stationary Markov models that have constant Markov coeffi-

cients (across the year) cannot estimate the aforementioned probabilities and instead propose Markov

models with periodic Markov coefficients that vary across the year.

Maximum partial likelihood estimation proves challenging for our proposed models because of

the large number of parameters involved. Thus, as a novel feature of the paper, we present a method

that uses parametric fits to the logit of the nonparametric estimates of the transition probability to

initialize the optim function in the R package. This method, which yields satisfactory results, may

well have application in other multi-parameter modeling situations.

We now summarize the paper. Section 3.1 describes the theoretical foundations on which the

models of this paper rest. To understand the nature of the binary frost-day stochastic process, we

perform an exploratory data analysis in Section 2. That section reveals the complexity of that process

and the need for a more refined method that is presented in Section 3.2. Although better than the

naive approach used in the exploratory analysis, that non-parametric filtering method is still unable

to adequately represent the process. However, it has a vital function in Section 3.3, that of providing

initial estimates for an optimization routine for computing model estimates. That method proves

successful and yields a model for the stochastic process. Section 3.5 gives ways in which our modeling

approach could be extended to chains of higher order given sufficient computing power. Finally

Section 4 discusses some applications and extensions of this work.

2 Exploratory analysis

This section presents results from an exploratory analysis of the binary process Y (t) using data records

from Medicine Hat, Alberta recorded over the period 1895 to 2006. The transition probabilities are

crudely estimated from that historical data, where years are assumed to be independent observations.

Similar analyses for other locations are given in Hosseini et al. (2010).

The left panels of Figure 1 and Figure 2 show respectively, the probability of a frost day over

the course of a year and the first order transition probability curves for the Medicine Hat station. A

regular seasonal pattern is seen, which is not surprising since the temperature changes during a year

are caused by smooth cyclic changes of the Earth’s location relative to the Sun.

On this basis and to see that pattern more clearly, for the next figures, we use a “cyclical” moving

average (i.e. filter) of length 11 to calculate empirical probabilities and transition probabilities (See

Section 3.2, Method 1 for more details). By “cyclical” here, we mean that the last days of any one

year are run into the first days of the next when computing the moving average. Figures 1 and 2 also

show the corresponding filtered curves in the right panels. In particular, Figure 2 shows the estimated
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transition probabilities, p̂01 and p̂11 for the Medicine Hat station. If the chain were a 0th-order Markov

chain then these two curves would overlap. [In fact the true transition curves would be identical.] This

is not the case and a Markov chain of at least 1st-order seems needed. In Figure 2, ˆp11 is missing for

a period over the summer. This is because no freezing day is observed over this period in the summer

and hence p̂11 could not be estimated.

Figure 3 depicts the filtered 2nd-order transition probabilities for Medicine Hat. The two curves

are separated again indicating that a 2nd-order Markov chain might be appropriate. However the sep-

aration is rather small and difficult to detect by model selection procedures. Moreover this separation

can only be seen by “cyclical filtering” of the annual data as the original curves are too noisy to allow

detection.

Finally, Figure 4 depicts the annually-averaged daily probability of frost in Medicine Hat with

the median line added. More precisely, we use the temperature data in a given year and calculate the

proportions of frost days for that year. The proportion is fairly constant across the years. In particular

no clear monotonic trend is seen here as might be expected under climate change scenarios. On the

other hand, such trends can be seen at other locations in Alberta (Hosseini et al. (2010)). Notice

some clustering across time in the proportions that tend to stay above or below the median line for a

few years, especially in earlier years. In this paper our main focus is capturing the seasonality of the

Markov chains and their seasonal evolution. Hence we do not consider long-term effects further.

3 Statistical models

Subsection 3.1 summarizes for completeness the theoretical foundations on which the models of this

paper rest. Subsection 3.2 describes a non-parametric method in which the naive non-parametric es-

timates in Section 2 are improved. Although better than the naive approach used in the exploratory

analysis, that non-parametric filtering method is still unable to adequately represent the process. How-

ever, it has a vital function in Sections 3.3 and 3.4, that of providing initial estimates for an optimiza-

tion routine for computing model estimates. That method proves successful and yields a model for

the stochastic process. Finally Subsection 3.5 gives ways in which our modeling approach could be

extended to chains of higher order given sufficient computing power.

3.1 Theoretical foundations

This subsection presents appropriate models for the binary process Y (t) (or Yt) of [frost]/[not frost]

days. The Categorical Expansion Theorem (Appendix) in Hosseini et al. (2011b) gives the form of

all such rth-order stationary and non-stationary Markov chains. We give a special case of the theorem

in the following example.

Example: For every (possibly non-stationary) binary (0-1) Markov chain of order r = 3 and t ≥ 3
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and a fixed transformation g : R→ R+, there exists a unique collection of functions a(·) such that:

gt = g−1{P(Yt = 1|Yt−1 = yt−1, · · · ,Y0 = y0)

P(Yt = 0|Yt−1 = yt−1, · · · ,Y0 = y0)
}

= a0(t)+a1(t)yt−1 +a2(t)yt−2 +a3(t)yt−3

+ a12(t)yt−1yt−2 +a23(t)yt−2yt−3 +a13(t)yt−1yt−3 +a123(t)yt−1yt−2yt−3.

Conversely every collection of arbitrary functions over time {a(t)} corresponds to a unique 3rd-order

binary (0-1) Markov chain that satisfy the above equations. If we take g : R→ R+, g(x) = exp(x)

then g−1(x) = log(x) in the above. If we also assume the {a(t)} are fixed over time, we get a unique

representation of stationary 3rd-order binary (0-1) Markov chains.

Most natural processes (such as temperature or precipitation) are non-stationary due to seasonal

(within year cyclic variation) and long-term non-stationarity due to long-term climate shifts (such as

those related to Global warming). This seasonal and long-term non-stationarity can be modeled by

letting the parameters change over time.

In order to model the probability of precipitation, Hosseini et al. (2011a) consider models of the

form

gt = α0 +α1t +α2 cos(ωt)+α3 sin(ωt)+β1yt−1,

where ω = 2π/366, as well as extensions to higher order chains. In the above example’s nota-

tion, this amounts to letting a0(t) = α0 +α1t +α2 cos(ωt)+α3 sin(ωt). The term α1t captures any

long-term trend in the probability of precipitation and α2 cos(ωt)+α3sin(ωt) captures the seasonal

patterns. Obviously, we can accommodate more complicated long-term non-stationarity effects by

adding terms such as t2, and more seasonal effects by adding terms such as 2cos(ωt),sin(2ωt). In

fact Hosseini et al. (2011a) compare many such models and observe that the one that best fits, still

misses some of the features observed in transition probabilities of the chains. This suggests a prob-

lem with the implicit and restrictive assumption that β1 or other “Markov coefficients” are considered

fixed over time and specially during the year. More precisely, the above model implies that the logit

(logit(x) = log(x/(1− x)) of the first order transition probabilities,

logit{P(Y (t) = 1|Y (t−1) = 0)}, logit{P(Y (t) = 1|Y (t−1) = 1)},

are parallel curves, by which we mean one is a vertical shift of the other. But there is no reason to

believe that rain yesterday has the same effect on the logit of the probability of rain the following

day, in winter as in summer. This paper considers models with fixed Markov coefficients, shows their

deficiencies and then extends them to Markov chains with varying Markov strength during the year.

An important remaining challenge is the computation time needed to maximize the “partial likeli-

hood” (see below) for Markov models with a large number of parameters. For example for a 1st-order

Markov model with 8 seasonal terms to represent the common seasonal factors and 8 seasonal terms
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to represent the 1st-order Markov component, maximization of the partial likelihood needs to be done

in a space of 16 dimensions. This takes a long time and is unreliable using standard functions such as

“optim” in the R package (a free widely used object-oriented statistical package), even if the number

of random initial values for the optim function are increased to 50. Instead, we propose a method that

uses parametric fits to the logit of the nonparametric estimates of the transition probability to initialize

the optim function in the R package and find our approach provides satisfactory results.

To fit our models, we use the partial likelihood maximization. By the way of an introduction,

we would note that generalized linear models were developed to extend ordinary linear regression

to the case that the response is not normal. However, that extension required the assumption of

independently observed responses. The notion of partial likelihood was introduced to generalize

these ideas to time series where the data are dependent. (See Kedem et al. (2002) for example.) The

following definition gives a more precise description.

Definition 3.1. Let Ft , t = 1,2, · · · be an increasing sequence of σ-fields, F0 ⊂ F1 ⊂ F2, · · · and let

Y1,Y2, · · · be a sequence of random variables such that Yt is Ft-measurable. Denote the density of Yt ,

given Ft , by ft(yt ;θ), where θ ∈ Rp is a fixed parameter. The partial likelihood (PL) is defined by

PL(θ;y1, · · · ,yN) =
N

∏
t=1

ft(yt ;θ).

The reader unfamiliar with σ-fields notion can think of Ft as the information available to us up to

time t. As an example, suppose Yt represents the 0-1 frost day process in Medicine Hat. We can define

Ft = σ{Yt−1,Yt−2, · · ·}. In this case, we are assuming the information available to us is the value of the

process on each of the previous days. If moreover we assume that Yt is a fixed-coefficient 2nd-order

stationary Markov chain, then P(Yt |Ft) = P(Yt |Yt−1,Yt−2). We define Zt−1 = (1,Yt−1,Yt−2,Yt−1Yt−2)

to be the covariate process in the sense that P(Yt = 1|Zt−1) = logit−1(θZt−1), which is a linear form.

Other useful covariate processes can be considered. For example Zt−1 = (1,Yt−1,cos(ωt),sin(ωt))

corresponds to a non-stationary 1st-order Markov chain. For any such Zt−1, by definition the log-

partial-likelihood is equal to:

N

∑
t=1

logP(Yt |Zt−1) =

∑
1≤t≤N,Yt=1

log(logit−1(θZt−1))+ ∑
1≤t≤N,Yt=0

log(1− logit−1(θZt−1)).

The vector θ that maximizes the above equation is called the maximum partial likelihood (MPLE).

Wong (1986) has studied its properties. Its consistency, asymptotic normality and efficiency can be

shown under certain regularity conditions.
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3.2 Non-parametric estimation

This subsection proposes non-parametric methods to estimate the seasonal transition probabilities.

First we present more details for creating the plots in Section 2 and then propose a refined method

that result in transition curves with less missing points during the year.

To rigorously present these methods, let ni j(t), i, j ∈ {0,1}, t = 1,2, · · · ,365 be the number of

pairs of binary event pairs (i, j) over the years that end on day t i.e.

ni j(t) = card{year|(Y (year, t−1),Y (year, t)) = (i, j)},

and

n1(t) = n11(t)+n10(t), n0(t) = n01(t)+n00(t).

Method 1: In Figure 2 (left panel), the transition probability pi j(t) is estimated by

p̂i j(t) =
ni j(t)
ni(t)

, ni > 5.

Requiring ni(t) > 5 avoids zero in the denominator while ensuring relative stability in the estimates.

Whenever ni(t) ≤ 5, pi j was not estimated. The resulting estimates seem noisy and hence a cyclical

filter of span 11 was applied i.e. the smoothed estimate is given by

f ilt(p̂i j(t),5) =
t+5

∑
t ′=t−5

p̂i j(t ′)/11, t = 1,2, · · · ,365.

The filter is cyclical in the sense that we let p̂i j(t ′) = p̂i j(t ′+365) for t ′< 0, and p̂i j(t ′) = p̂i j(t ′−365)

for t > 365, to ensure that the end of one year is included with the beginning of the next. We thereby

reflect the strong annual frost cycle. The filter’s window of 11 was chosen so that the changes in the

transition probabilities from one day to another would be small (less than 3 %). Here we are assuming

that the temperature’s annual seasonal pattern (as seen empirically during the period 1895–2006), due

to the relative positions of the Sun and Earth, changes smoothly over the year. This assumption seems

reasonable on substantive grounds; it is intuitively implausible that for example, from Jan 20th to Jan

21st the transition probability, p11 (frost given frost) would change by more than 3 percent.

Empirical application of this seemingly natural approach reveals a serious shortcoming. When

p̂i j(t) is missing, not only f ilt(p̂i j(t),5) will be missing but also f ilt(p̂i j(t),5) for the neighboring

points will be missing as evident in Figure 2, right panel. A different a approach was called for.

Method 2: This method applies a moving window with an 11 day span initially and only then esti-

mates the transition probability using all the days. Again we require ni > 5 to avoid missing estimates

10



and stability. More precisely,

ni j(t) = card{year|(Y (year, t ′−1),Y (year, t ′)) = (i, j), t ′ ∈ [t−5, t +5]},

n1(t) = n11(t)+n10(t), n0(t) = n01(t)+n00(t), p̂i j(t) =
ni j(t)
ni(t)

, ni > 5. (1)

Note that in this method the definition of ni j(t) is altered to include t ′ ∈ [t− 5, t + 5] (as opposed to

only t). Figure 5 shows the result, a more complete curve than that depicted in Figure 2.

Figure 6 applies the techniques explained above to get non-parametric estimates of the 2nd-order

transition probability. This time, having less data than before, we take the moving window to be of

length 15 and require ni j > 5, as before, thereby obtaining estimates of {pi jk}.
One could use these non-parametric estimates as an estimate of the frost day process. However the

transition probabilities are not completely defined over the whole year; a gap appears mid-year for the

{p11(t)}. This anomaly is unimportant in practice since the chain is extremely unlikely to enter its “1”

state during that period. But for completeness we can avoid it by reconstructing the mid-part of the

chain. The reconstruction can either be done by assigning a small non-negative probability value or

by using another filtering method, which we call the “NA filling” filtering. The latter approach works

as follows. For any point with a missing estimate, consider its two neighboring days. If only one

(respectively both) of them has (have) a value, enter that value (their average value) for the missing

one. Applying this filter repetitively often enough will fill all the gaps. The number of such repetitions

is half of the size of the biggest gap. The result is shown in Figure 7.

There we see a jump in mid-year for the p̂11 curve, an anticipated although unnatural feature. But

the reconstruction does what it is supposed to do, that is ensure the chain will not terminate in mid-

year. Note that the chain has a small chance of entering the top curve in the first few days where it

was missing originally, but a negligible chance to be on the top curve where the jump occurs (because

it is very unlikely to have a frost during that period).

In order to compare this non-parametric estimate to other estimates, we can calculate the log

partial-likelihood (LPL) of this chain given the data. The log partial-likelihood turns out to be

LPL = 9418.9 and hence −2LPL = 18837.7. Note that with 2×366 parameters and the same partial

likelihood value, we get BIC = −2LPL+(2× 366) log(n) = 26601.0. This shows that if we maxi-

mize the likelihood with a vector of 2×366 parameters (one for each pi1(t)) then the BIC would be

bounded by 26601.0.

If we use fixed parameters p11(t) and p01(t) for every week, we will need 2× 52 parameters

since every year has roughly 52 weeks. In order to get an upper bound, we need to fit a model

with 2×52 = 104 parameters and calculate the likelihood. To do so, for every week we compute the

average of the transition probabilities and replace the transition probability for the whole week by that

average. The results are given in Figure 8 (Left panel). Then for this set of parameters−LPL= 9430.0

and hence BIC = −2LPL+ 2× 52log(n) = 19962.9 while AIC=19067.9, giving upper bounds for a
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BIC/AIC of a model with 104 parameters, 52 for each of the transition probabilities. This model is

computationally challenging to fit due to high dimension of the parameter space. Therefore we use

the initial value obtained by the non-parametric estimate and get BIC = 19936,AIC = 19041, which

is a slight improvement on the upper bound obtained above. The fits are given in Figure 8 (Right

panel). The fit differs only slightly from the initial non-parametric values.

We showed above that non-parametric estimates can give satisfactory results in terms of fits.

However the application of this method has some drawbacks. For example substantial amounts of data

are needed to get reliable estimates and extensions to include other possibly continuous covariates or

spatial-temporal models are not feasible.

3.3 Model with fixed coefficients

Building on the background acquired in previous sections, this subsection finds models for the extreme

minimum temperature process Y (t) using non-stationary high-order Markov chains. We start with

fixed Markov coefficients and show their deficiencies. That leads to models with time-varying Markov

coefficients and we fit those models by initializing the optim function at initial values obtained using

non-parametric methods discussed in the previous subsection. We investigate the following predictors

for varying integers k:

• Y k(t)≡ Y (t− k), whether or not it was a frost day k days ago.

• Nk, the number of freezing days during the k previous days.

• sin, cos, sin2 and cos2, · · · which are abbreviations for sin(ωt), cos(ωt), sin(2ωt) and cos(2ωt), · · ·
respectively with ω = 2π

366 .

First we compare all models with an intercept, represented as the predictor that is identically “1”, and

any subset of the other predictors:

Y 1,Y 2,Y 1Y 2,N5,N10,cos,sin,cos2,sin2,cos3,sin3.

The number of possible models is then 211 = 2048. To cut down the computation time we initially

focus on Medicine Hat’s minimum temperatures during the period 1995–2000.

The result is that both the BIC and AIC criteria include Y 1, cos and sin in their best five models.

That led us to include those covariates in all models subsequently considered. Those other models

involve some combination of the remaining predictors, Y 2,Y 1Y 2,N5,N10,cos2,sin2,cos3,sin3. The

analysis then used all data from the period 1895–2006 and all 28 = 256 models.

Table 1 presents the top five models according to both the BIC and AIC criteria. The rankings by

these criteria are consistent except that each inverts the ranking of the other’s 3rd and 4th models. The

best model based on both the BIC and AIC criteria involves the predictor vector (1,Y 1,cos,sin,cos2,N5),
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a parsimonious 5th-order non-stationary chain with 3 seasonal terms. The second best has predictor

vector (1,Y 1,cos,sin,Y 2,Y 1Y 2,cos2,N5), which is also a 5th-order chain with two more covariates

Y 2 and Y 1Y 2. However the coefficient for Y 2 equals 0.04, which is rather small. BIC’s third best

model is a 10th-order parsimonious Markov chain with three seasonal terms. The last two models by

BIC are 2nd-order Markov models.

The gaps between the AIC/BIC values change the most between the first model and rest. Note

that the predictor vector in the best model by both criteria is (1,Y 1,cos,sin,cos2,N5) whereas BIC’s

third best model uses

(1,Y 1,cos,sin,cos2,N10).

The factors lead to the concern that replacing N5 by any one of the powers might improve AIC and BIC

performance, although to cut computation times, we had not included any of N2,N3,N4,N6,N7,N8,N9

amongst the predictors. To test this theory, we fitted those extra models and found that N5 was indeed

best amongst all these predictors.

Next we assessed the best model chosen by BIC and AIC by inspecting the conditional probability

fits. Figure 9 shows the 1st-order conditional probability fit for the model (1,Y 1,cos,sin,cos2,N5).

The estimated first order probabilities look satisfactory at first glance. However an issue of concern

arises on closer inspection, namely the probability of frost given no frost in the summer is over-

estimated during the summer. In fact if we compare the distribution of the fitted number of frost

days in summer with the observed distribution using Kolmogorov distance or any other distance mea-

sure, a large difference is seen. The same anomaly is observed by inspecting other top models in

Table 1. These fits are thus of small practical value, since the risk of frost just before, during, or just

after the growing season are of great concern to farmers, managers, insurance companies and govern-

ment agencies. One might think that adding more seasonality terms (i.e. more Fourier series terms)

would solve this problem. However even when we considered fits that include higher frequencies

(cos(4ωt),sin(4ωt), · · · ), both the AIC and BIC criteria suggested even less favorable results and the

fits did not improve significantly. We are thus led to seek the source of this kind of difficulty, and in

particular, to see if it is due to some implicit assumption we have made.

3.4 Markov Models with time-varying coefficients

We begin with an investigation of the limitations of the models used above with fixed Markov com-

ponents by fitting them to the non-parametric estimates of the transition probabilities p01 and p11. By

doing this instead of fitting the actual binary data, we dramatically reduce the computation time and

can handle models with many parameters. Nevertheless, with more seasonal parameters both transi-

tion curves could not be fit simultaneously leading us to include an auxiliary binary variable that is

“1” for the logit(p11(t)) curve and is “0” for the logit(p01(t)) curve, t = 1, · · · ,365. Then we used a

Fourier series of up to order 8 i.e. sin(ωt),cos(ωt), · · · ,sin(8ωt),cos(8ωt), which is a large enough
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number of parameters to estimate the rather simple form of these curves. The fits to the logit scale are

given in Figure 10 which shows the fits are not satisfactory, despite the large number of parameters .

Note that even if we increase the number of the parameters, we can never fit or come close to fitting

these data perfectly. That failure is because of the assumption made implicitly that the logit transition

curves are parallel.

The previous analysis suggests that to make progress, we need to relax the assumption of fixed

coefficients and turn to Markov chains with time-varying Markov coefficients. We first focus on the

1st-order chains and move on to higher orders later. Thus assume

logit{P(Y (t) = 1|Y (t−1) = yt−1, · · ·) = a0(t)+a1(t)yt−1,

where a0(t) and a1(t) are periodic functions with period 366, modeled with Fourier series. The

challenge here is the large number of parameters that might potentially be needed to successfully

capture the seasonal trend. Globally maximizing the partial likelihood with so many parameters is

very difficult using procedures such as the optim function in R, our preferred choice. Comparing

several models using AIC/BIC in this fashion is even more challenging. Initially attempts involved

picking several random but reasonable initial values for the MPLEs (maximum partial likelihood

estimates). But even 50 random initial values selected uniformly over a sensible neighborhood of the

0 vector, left great uncertainty about the global optimum in models with more than 16 parameters.

Moreover the computations required several hours and in some cases days to fit a single model on

computer with a 2.2 GH processor and 8 of GB RAM. However, that failure led us to a successful

alternative.

For simplicity, we start with models for which a0(t),a1(t) have the same number of terms involv-

ing sin(ωt),cos(ωt), . . . ,sin(nωt),cos(nωt) and possibly different coefficients. We fit these 1st-order

time-varying Markov models first by simply using 3 random initial values and optim. The results are

seen in the second column of Table 2. Mathematical considerations suggest the negative likelihood

(-LPL) should decrease with an increasing number of the parameters in the model. Instead we see

that it has increased. That anomaly is due to the MPLEs for larger models being far from the true

global maxima. To overcome this problem, we use the logit of the non-parametric 1st-order transition

curves, fit parametric models that correspond to our target models, and then use them to initialize the

optim function.

To fix ideas let

logit{P(Y (t) = 1|Y (t−1) = yt−1, · · ·)}= a0(t)+a1(t)yt−1,

with

ai(t) = αi +α
1
i cos(ωt)+β

1
i sin(ωt)+α

2
i cos(2ωt)+β

2
i sin(2ωt), i = 0,1.
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Then take the logit of non-parametric estimates of p01 and p11 obtained above, as a response variable

u11 = logit(p11 +10−10), u01 = logit(p01 +10−10),

where the 10−10 has been added to ensure the logit is well-defined. [Note that a probability of 0 and

10−10 are of no practical importance. Moreover logit(10−10) =−23 is a value that neither overflows

the processor’s capacity nor critically changes the theoretical results in partial likelihood theory.] We

define an auxiliary variable called aux which is equal to 0 or 1 according as we are on the curve u01

or u11. We also include Fourier terms cos(ωt),sin(ωt),cos(2ωt),sin(2ωt) and their interactions with

aux,

(aux)cos(ωt),(aux)sin(ωt),(aux)cos(2ωt),(aux)sin(2ωt).

Then standard generalized linear models (GLM) for continuous data can be used to fit curves to the

response u using the variables 1,aux,cos(ωt), · · · ,(aux)sin(2ωt). We use the resulting estimated

parameter vector to initialize the corresponding partial likelihood model with covariates

1,Y 1,cos,sin,cos2,sin2,Y 1,Y 1cos,Y 1sin,Y 1cos2,Y 1sin2.

Table 2 shows the results of fitting 1st-order time-varying Markov models with Fourier terms up to

cos(nωt),sin(nωt) for both a0(t) and a1(t) and n= 2,3,4,5,6,7. The second column shows the values

of the negative partial likelihood obtained from the non-parametric fits along with an upper bound for

AIC and BIC. The fourth column shows the results of applying optim to that initial value. We observe

a major improvement in the computed negative likelihood and consequently in BIC and AIC. The best

model according to BIC is the one with n = 5 and according to AIC is the one with n = 6. Figure 11

shows the corresponding fits of these models for n = 6. The left-hand panels in the Figure shows the

fit to the non-parametric logit curves to initialize the optim function and the righthand panels show

the final fits using the initial value picked in this fashion. Tracking the non-parametric fits graphically

is quite useful because we can check if the initial values themselves fit the logit scale well. It should

not be expected that a poor fit on the logit scale would serve as a satisfactory initial value. Instead it

would suggest the need for more Fourier terms.

To fit higher order Markov chains in a simple manner using the above techniques, we simply add

0s to the initial value to correspond to higher order terms. For example, we can add the covariate

N5 by extending the covariate process and adding one zero to the initial value vector obtained above,

to correspond to the new covariate N5. Also we can add two higher order Markov terms Y 2,Y 1Y 2

by adding two zeros to the initial value vector obtained above. The results are given in Table 3 for

the models above with n = 5,6, which are optimal using BIC and AIC respectively. Values for the

optimal models are in boldface. Comparing these results with Table 1, we observe that while AIC is

improved dramatically, BIC is still beaten by overly simple models that do not capture the transition

curves. Since the fits do not show any trace of over-fitting, this result seems to indicate that AIC is
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a better measure for assessing complex Markov models. However here we did not fit all possible

combinations of the models due to the high number of comparisons to be made. If we would wish

to fit models that include 1,Y 1 and Fourier terms of up to n = 7 for example, we would need to fit

228 models, each taking about 7 or 8 minutes according to Table 2. This computation would take

approximately 4000 years!

To compare many combinations then, we again propose a method based on the fits to the non-

parametric estimates. We compare the fits of all the combinations of covariates

sin,cos, · · · ,sin6,cos6,aux,(aux)cos,(aux)sin, · · · ,(aux)cos6,(aux)sin6,

with the logit of the non-parametric transition curves as the response. Note that fitting such models is

very fast in R (as opposed to maximizing the partial likelihood). R also provides the AIC for each of

these fits and we use that approach to pick the model with smallest AIC. That model turns out to have

covariates:

sin,cos,sin2,cos2,sin3,cos3,sin4,cos4,sin5,sin6,cos6,

aux,(aux)cos,(aux)sin2,(aux)cos2,(aux)sin6.

Fitting the corresponding partial likelihood model to the original data, we get

(−LPL,BIC,AIC) = (9449,19079,18933),

which shows an improvement in terms of AIC and BIC compared to 1st-order Markov models in Table

2. Once again we can add higher order Markov terms N5, Y 2 and (Y 2,Y 1Y 2) to get

add N5 → (−LPL,BIC,AIC) = (9407,19006,18851),

add Y 2 → (−LPL,BIC,AIC) = (9422,19035,18880),

add (Y 2,Y 1Y 2) → (−LPL,BIC,AIC) = (9412,19025,18862).

Therefore the model with covariates

1,cos,sin, · · · ,cos6,sin6,Y 1,Y 1cos,Y 1sin2,Y 1cos2,Y 1sin6,

has the smallest BIC among all compared models and is close to AIC for the model in the last row of

Table 3. We repeated model selection with BIC and we got (−LPL,BIC,AIC) = (9478,19093,18982)

for the model with covariates

aux,sin,cos,sin2,cos2,sin3,cos3,sin4,cos4,sin5,sin6,(aux)cos2,
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which is inferior to the non-parametric fit that AIC picked above with

(−LPL,BIC,AIC) = (9449,19079,18933).

The fits to the 1st-order and 2nd-order transition probability for the overall optimal model picked by

AIC in Table 3 with seasonality terms up to sin6 and cos6 for both fixed and Markov components and

2nd-order covariates

Y 2,Y 1Y 2,

are given in Figures 12 and 13. The fits to the 1st-order transition probabilities are quite satisfactory.

The fits to the 2nd-order transition probabilities do not fully match the estimated non-parametric

companions and even though they do show separation of the pair of transition curves, the separation

is not as pronounced as the non-parametric estimates. However note that here we are not fitting curves

to observations and rather compare them to non-parametric estimates which are noisy due to less data

in comparison to the 1st-order chains. To investigate the problem more we extended this model by

adding the covariates Y 2cos,Y 2sin,Y 1Y 2cos,Y 1Y 1sin, thus creating a time-varying 2nd-order chain.

We obtained AIC=18860 , BIC=19136 and the fits did not show much improvement. The fits to the

1st-order and 2nd-order transition probabilities for the overall optimal model picked by BIC with

covariates

1,cos,sin, · · · ,cos6,sin6,Y 1,Y 1cos,Y 1sin2,Y 1cos2,Y 1sin6,N5

were similar to the optimal model picked by AIC but slightly inferior in tracking the non-parametric

curves in both 1st and 2nd-order transition probabilities and we do not show them here for brevity.

In summary in this section we have used AIC/BIC to guide us to appropriate models and we then

check their fits to pick the final model. Below is a summary of the search we propose in finding

appropriate models.

1. Fit the non-parametric estimates of 1st-order transition probabilities with different n for the

Fourier series expansion and identify ns for which the non-parametric fits look satisfactory.

Use the initial values of the satisfactory fits (chosen n) to fit the chain using partial likelihood.

Also extend the models to higher orders by adding N5,Y 2,Y 1Y 2 to the covariate and inspect

AIC/BIC as well as their fits.

2. Use AIC/BIC to perform model selection relative to the non-parametric logit 1st-order tran-

sition probabilities and choose the optimal models. Try these optimal fits (by calculating the

partial likelihood, AIC/BIC) as well as their extensions by adding N5,Y 2,Y 1Y 2 to the covariate

and inspect AIC/BIC along with their fits

3. Compare the best fits from 1,2 and choose the final model.

As discussed above, in Step 2, AIC seems to be more appropriate for the model selection part (in this
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data). Also the final model with most satisfactory fit to the non-parametric estimates in this data came

from Step 1, in Figure 13. However the smallest overall BIC was detected in Step 2.

3.5 Extensions to higher orders

Note that the techniques discussed for 1st-order time-varying Markov chain can be extended to higher

orders. For simplicity, we only discuss how these techniques can be extended to 2nd-order chains. By

the Categorical Expansion Theorem for Markov Chains (Appendix), every 2nd-order binary Markov

chain (with strictly positive joint distributions for any finite collection of times) can be represented by

an initial joint probability P(Y0,Y1) and the logit conditionals

logit{P(Y (t) = 1|Y (t−1),Y (t−2))}=

a0(t)+a1(t)Y (t−1)+a2(t)Y (t−2)+a1,2(t)Y (t−1)Y (t−2),

for unique functions a0,a1,a2,a1,2. Conversely any such collection of functions corresponds to a

unique chain (up to distributional equivalence). In the previous section, we discussed several Markov

models with time-varying 1st-order coefficients. We can extend such models to higher orders by

assuming

a j(t) = α
j
0 +

n

∑
i=1

[α
j
i cos(iωt)+β

j
i sin(iωt)].

The computational challenge is even more acute for these higher order models. However non-

parametric methods like those in above can be applied. For example, suppose we are interested in

fitting the following 2nd-order Markov chain:

logit{P(Y (t) = 1|Y (t−1),Y (t−2))}= α0 +α
1
0 cos(ωt)+β

1
0 sin(ωt)+

α1Y (t−1)+α
1
1Y (t−1)cos(ωt)+α2Y (t−2)+β

1
2Y (t−2)sin(ωt)+

α1,2Y (t−1)Y (t−2)+α
1
1,2Y (t−1)Y (t−2)cos(ωt).

Also suppose we have non-parametric estimates available for pi j1, i, j ∈ {0,1}. Then we introduce

two auxiliary variables aux1,aux2 corresponding to Y (t− 1) and Y (t− 2) and also consider the in-

teraction term (aux1)(aux2) to correspond to Y (t− 1)Y (t− 2). For points on the curve p001, we let

aux1 = aux2 = 0; for p011, aux1 = 1,aux2 = 0; for p101, aux1 = 0,aux2 = 1; and finally for p111, we

let aux1 = aux2 = 1. Then we fit a normal linear model using all the data pooled and covariates

1,cos(ωt),sin(ωt),aux1,(aux1)cos(ωt),

aux2,(aux2)sin(ωt),(aux1)(aux2),(aux1)(aux2)cos(ωt)
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and use the obtained vector to initialize optim. It should be clear now how these can be extended to

even higher Markov chains.

4 Discussion and concluding remarks

In order to model frost day occurrences, several non-stationary, high-order Markov chains are consid-

ered and compared. These models can capture the strong seasonality of these processes well and also

accommodate long-term trends and dependence in the chain as discussed in Section 3.1. It turns out

that to capture the evolution of the process, one needs to consider time-varying Markov coefficients.

To overcome the high computational costs, we suggested the use of non-parametric fits to the condi-

tional probabilities to guide our parametric estimation. This idea was also used in Model selection.

The final model we propose based on this analysis includes covariates

1,sin(ωt),cos(ωt), · · · ,sin(6ωt),cos(6ωt),

Yt−1,Yt−1 sin(ωt),Yt−1 cos(ωt), · · · ,Yt−1 sin(6ωt),Yt−1 cos(6ωt),Yt−2,Yt−1Yt−2.

It had the smallest AIC among all models we compared and also revealed satisfactory fits to the

transition probabilities (Figures 12 and 13).

Another possible method to overcome the computational burden is to use blocks of data (say

every 5 years) to fit a model several times and initialize optim at all the obtained values. We used this

idea to reduce the model selection time at the beginning of Section 3.3. However, the reduction in

computations in this case is far less significant than using the non-parametric methods.

Hosseini et al. (2010) use similar models to provide confidence intervals for events such as: π :

The probability of having at least 5 days without frost in the first week of October. The confidence

intervals were obtained once using the partial information matrix of the parameters and once using a

bootstrap method. The results were quite similar. The confidence interval was (0.75, 0.85) using the

partial information matrix and (0.74, 0.85) using the bootstrap method.

Note that the formulation in this paper includes Markov chains with changing orders over time as

a special case. For example here we introduce a Markov chain that changes its order from 0 to 1 at

time tc:

logit{P(Y (t)|Y (t−1))}= a0(t)+a1(t)Y (t−1),

where a1(t) = 0, t < tc and a1(t) = k 6= 0, t ≥ tc. The parameters of this chain also can obviously be

estimated using partial likelihood and this can be extended to higher orders. There is little to believe

such jumps are useful in weather processes and so we did not use them here.

Finally a comparison with continuous-valued (Gaussian) models of minimum temperature would

be desirable in future work and we believe a complex continuous-valued model is needed. The tech-

niques developed here can also be used in the continuous setting for example by considering models
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such as Y (t) = a0(t)+a1(t)Y (t−1)+a2(t)Y (t−2)+ε(t), where ε(t)∼ N(0,σ(t)2), are independent

errors. Seasonal/long-term structures can be considered for functions a1(t),a2(t),σ(t). This is an

extension of the well-studied Autoregressive models (AR). Similar extensions can be considered for

ARIMA processes.
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5 Appendix

Here we state the Categorical Expansion Theorem for categorical Markov chains, which characterizes

all discrete-time categorical Markov chains of a given order. A similar result also holds for arbitrary

discrete-time processes and the proof of both can be found in Hosseini et al. (2011b).

Theorem 5.1. (Categorical Expansion Theorem for Markov Chains) Suppose that {Yt}, t = 0,1,2, · · ·
is an rth-order Markov chain where Yt takes values in Mt , a finite subset of real numbers, |Mt |= ct =

dt +1 < ∞, the conditional probabilities

P(Yt = yt |Yt−1 = yt−1, · · · ,Y0 = y0), t = 1,2, · · ·

are well-defined and belong to (0,1). Fix m1
t ∈Mt , let M′t = Mt −{m1

t } and suppose g : R→ R+ is a

given bijective transformation. Then

gt(yt , · · · ,y0) = g−1{ P(Yt = yt |Yt−1 = yt−1, · · · ,Y0 = y0)

P(Yt = m1
t |Yt−1 = yt−1, · · · ,Y0 = y0)

},

is a function of t +1 variables for t < r, (yt , · · · ,y0) and is a function of r+1 variables,(yt , · · · ,yt−r),

for t > r. Moreover there exist parameters

{αt
i0,··· ,it}0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0 , for t < r,

and

{αt
i0,··· ,ir}0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤ir≤dt−r , for t ≥ r,

such that for t < r:

g−1{ P(Yt = yt |Yt−1 = yt−1, · · · ,Y0 = y0)

P(Yt = m1
t |Yt−1 = yt−1, · · · ,Y0 = y0)

}=

∑
0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0

α
t
i0,··· ,it y

i0
t−0 · · ·y

it
t−t ,

(y0, · · · ,yt) ∈M0×·· ·Mt−1×M′t ,
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and for t ≥ r:

g−1{ P(Yt = yt |Yt−1 = yt−1, · · · ,Y0 = y0)

P(Yt = m1
t |Yt−1 = yt−1, · · · ,Y0 = y0)

}=

∑
0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤ir≤dt−r

α
t
i0,··· ,ir y

i0
t−0 · · ·y

ir
t−r

(y0, · · · ,yt) ∈M0×·· ·Mt−1×M′t .

Moreover any collection of arbitrary parameters

{αt
i0,··· ,it}0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0 , for t < r,

and

{αt
i0,··· ,ir}0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤ir≤dt−r , for t ≥ r,

specify a unique rth-order Markov chain (upto distribution) by the above relations.

In the case of homogenous Markov chains, the αt
i1,··· ,ir do not depend on t for t > r.

Remark. The binary case is a special case for which the powers of yt−1, · · · ,yt−r in the representation

are at most 1. This means while interaction terms such as yt−1yt−2yt−3 appear in the representation,

terms such as y2
t−2yt−3 do not appear.
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Figure 1: (Left) The estimated probability of a freezing day for the Medicine Hat site for different
days of a year computed using the historical data. (Right) is a smoothed version of the right curve
using a moving average filter of length 11.

Figure 2: (Left) The estimated 1st-order transition probabilities for the 0-1 process of extreme min-
imum temperatures for the Medicine Hat site. The dotted line represents the estimated probability
of “Y (t) = 1 if Y (t − 1) = 1" ( ˆp11) and the dashed, “Y (t) = 1 if Y (t − 1) = 0" ( ˆp01). (Right) is a
smoothed version of the right curve using a moving average filter of length 11 (Section 3.2, Method
1).
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Figure 3: (Left) The smoothed estimated 2nd-order transition probabilities for the 0-1 process of
extreme minimum temperatures for the Medicine Hat site with p̂111 (dashed) compared with p̂011
(dotted) calculated from the historical data. (Right) p̂001 (dashed) compared with p̂101 (dotted) cal-
culated from the historical data.

Figure 4: Medicine Hat’s estimated annual proportion of frost days calculated from the historical data
with the median line added.
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Figure 5: The non-parametric estimate of the 1st-order transition probability (dashed line p01 and
dotted line p11) of a freezing day for the Medicine Hat site for different days of a year computed
using Method 2 given in Equation 1.

Figure 6: (Left) The smoothed estimates of 2nd-order transition probabilities for the 0-1 process of
extreme minimum temperatures for the Medicine Hat site with p̂111 (dashed) compared with p̂011
(dotted) calculated from the historical data. (Right) The smoothed estimated p̂001 (solid) compared
with p̂101 (dotted) using an extension of Method 2 (Equation 1) to higher orders.
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Figure 7: The estimated conditional probabilities (left panel p11 and right panel p01) of a freezing day
for the Medicine Hat site for different days of a year computed using the historical data (circles) with
missing values filled-in (dashed line).

Figure 8: (Left) The estimated probability of a freezing day for the Medicine Hat site for different
days of a year computed using the historical data average for 1 week. (Right) The estimated transi-
tion probability curves computed by maximizing the partial likelihood with 2×52 weekly transition
parameters.
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Figure 9: The estimated 1st-order transition probabilities for the 0-1 process of extreme minimum
temperatures for the Medicine Hat site for the model with covariate process (1,Y 1,N5,sin,cos,cos2).
The dotted line represents ˆp11 and the dashed ˆp01.

Figure 10: The fits to logit transition probability using fixed 1st-order Markov component models
with seasonality covariates going up to cos8 and sin8. The fits are not satisfactory. For example we
notice that at the beginning of the year logit(p11) is under estimated and logit(p01) is over estimated.
The explanation seems to be that the fitted logit transition curves are forced to be vertical shifts of
each other.
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Figure 11: (Lefthand two panels.) The estimated logit transition probabilities com-
puted by fitting (1,cos,sin, · · · ,cos6,sin6) to the logit of nonparametric 1st-order transition
probability estimates. (Righthand two panels) The estimated transition probabilities for
(1,cos, · · · ,sin6,Y 1,Y 1cos, · · · ,Y 1sin6), computed as MPLEs initialized at the estimates obtained
from the estimated parameters in the left panel.

Figure 12: The smoothed estimated 1st-order transition probabilities for the 0-1 process of extreme
minimum temperatures for the Medicine Hat site. The dotted line represents ˆp11 and the dashed, ˆp01.
The fits are from the optimal model picked by AIC given in Table 3.
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Figure 13: (Left) The smoothed p̂111 curve (dashed) compared with p̂011 (dotted). (Right) The
smoothed p̂001 (dashed) compared with p̂101 (dotted). The fits from the optimal model picked by AIC
in Table 3.

Table 1: The best five models picked by BIC and AIC for Medicine Hat, 1895–2006 for the binary
process of days with frost.

Model covariates BIC, rank AIC, rank parameter estimates

(1,Y 1,cos,sin,cos2,N5) 19039, 1 18987, 1 (-0.9,1.4,-3.2,-0.8,0.4,0.2)
(1,Y 1,cos,sin,Y 2,Y 1Y 2,cos2,N5) 19078, 2 19009, 2 (-0.9,1.4,-3,-0.8,0.04,0.1,0.5,0.2)
(1,Y 1,cos,sin,cos2,N10) 19088, 3 19036, 4 (-1.3,1.6,-2.7,-0.6,0.4,0.1)
(1,Y 1,cos,sin,Y 2,cos2,sin2) 19089, 4 19029, 3 (-0.7,1.6,-3.3,-0.9,0.6,0.5,0.1)
(1,Y 1,cos,sin,Y 2,cos2) 19093, 5 19042, 5 (-0.7,1.6,-3.4,-0.8,0.4,0.5)

Table 2: Comparing partial likelihood fits with random initial values (right panel) and fits using initial
values obtained from non-parametric estimates (left panel).

nonparametric initial random initial

n (-LPL,BIC,AIC) time (-LPL,BIC,AIC) time

2 (9506, 19118, 19032) 7 min (9723, 19551, 19465) 21 min
3 (9893, 19934, 19813) 7 min (9840, 19829, 19708) 21 min
4 (9494, 19179, 19024) 8 min (10392, 20974, 20819) 22 min
5 (9432, 19096, 18907) 8 min (10835, 21903, 21714) 23 min
6 (9422, 19119, 18896) 9 min (13739, 27755, 27531) 22 min
7 (9440, 19199, 18941) 8 min (16587, 33492, 33234) 22 min
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Table 3: We add higher order covariates (N5,Y 2,Y 1Y 2) to best 1st-order fits found by initializing
partial likelihood maximization using non-parametric fits. n denotes the upper bound for the Fourier
terms. The initial values for these models were obtained by extending the corresponding initial vector
for the 1st-order case by simply adding zeros for the high-order covariates.

Model Complexity (-LPL,BIC,AIC)

n = 5, N5 (9408,19059,18862)
n = 6, N5 (9402,19091,18859)
n = 5, Y 2 (9402,19048,18851)
n = 6, Y 2 (9396,19078,18846)
n = 5, Y 2,Y 1Y 2 (9402,19059,18852)
n = 6, Y 2,Y 1Y 2 (9392,19082,18841)

30


