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Abstract

This paper explores the topic of preferential sampling, specifically the situation
where monitoring sites in environmental networks are preferentially located by the
designers. This means the data arising from such networks may not accurately char-
acterize the spatio–temporal field they intend to monitor. Approaches developed to
mitigate the effects of preferential sampling have taken in two very different con-
texts and current methods are reviewed. Building on these approaches, a very gen-
eral framework for dealing with the effects of preferential sampling in environmental
monitoring is proposed. This is followed by a development of strategies for its im-
plementation. A practical example of its implementation is given through a case
study in which we consider preferential sampling in the long–term development of
an air pollution monitoring network in the UK. We consider changes in locations
and periods of operation of black smoke monitoring sites over an extended period
(1970-1996). We show how the most appropriate of the strategies for this case can
be used to adjust the annual averages to compensate for preferential sampling which
generally result in reduction in concentrations over time. Even more dramatic results
are seen when adjusting estimates of the number of sites out of compliance.

Keywords: preferential sampling; Horwitz - Thompson estimator; response biased sam-
pling; spatio–temporal fields; spatial point process

AMS 2010 classification: 62P12; 62D99

1 Introduction

This paper is a sequel to the important paper of Diggle et al. [2010] (hereafter D10) and
addresses the topic of preferential sampling in the selection of the spatial locations at which
to collect samples. The topic of this paper relates to the selection of spatial sampling sites

∗The work described in this paper was partially supported by a discovery grant from the Natural
Sciences and Engineering Research Council of Canada
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for environmental risk management. Such sampling sites have been used by various agencies
for a variety of purposes. (See Le and Zidek [2006].) Sometimes they are selected to yield a
representative sample of an environmental field. But often they are preferentially selected
in a way that depends stochastically on the responses being measured or conditionally on
the environmental process parameters, leading to what D10 calls “preferential sampling”.

Since the measurements of the random responses at such sites may be critical for analy-
sis, management or administrative purposes, the effects of such sampling may be of concern.
For example urban air pollution monitoring sites provide the information that may be used
to detect noncompliance with air quality standards (EPA [2005]). Then the designer may
locate the sites where air pollution levels are believed to be the highest (although reaching
that goal presents its own challenges as shown by Chang et al. [2007]). Reaching this goal
would mean the measured concentrations would overestimate the levels of the pollutant
in that urban area. That could render these data unsuitable for other purposes, e.g. es-
timating the relative risk parameter in the health effects model for the pollutant. These
considerations point to the need for a model to reflect preferential sampling processes but
as well a way of compensating for their effects. Those effects will depend on the inferential
objectives for which the data are collected.

The approaches taken in this paper build on two approaches described in Section
2. Neither addresses the issue of concern in this paper, the mitigation of the effects of
preferential site selection in monitoring networks that adaptively change over time like
the one in the case study .presented in Section 5. The first approach, which has its
origins in biostatistics, is based on the idea of response biased sampling surveyed in Scott
and Wild [2011] (hereafter S11), which extends the work of Lawless et al. [1999]. The
inferential purpose of that approach means that spatial dependence can be ignored, a
serious limitation from the perspective of the work described here. In contrast, the second
approach does make spatial dependence a fundamental modeling component. It assumes a
known parametric form for the preferential sampling process and by treating the selected
sites as data, likelihood based methods can be used to estimate both process and selection
model parameter, thereby compensating for preferentially siting of the monitors. The
second approach unlike the first ignores covariates.

This paper continues the exploration begun in D10 but now in a spatio – temporal
context. In addition to providing a sampling framework for preferential sampling, these
papers explore ways of compensating for its deleterious effects. Section 3 provides a super-
population framework for building a unified approach to dealing with those effects. Then
Section 4 presents several strategies for implementing that framework, including one that
resembles the point process modeling approach of D10, but which can be applied in the do-
main of interest in this paper. The methods all rely on variations of the Horwitz-Thompson
approach for unbiasing estimates based on preferentially sampled data, an idea suggested
by Rathburn [2010]. Viewed from an administrative perspective, unbiasedness would be
important for official estimates published at any given time. The characteristic ensures
that these estimates can be combined to form aggregate estimates with improved accuracy
as measured by mean squared error.

Section 5 demonstrates use of our methods in a case study concerning the preferential
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adaption over time of the UK’s black smoke monitoring network, starting in 1970. We
show there, that correcting for bias can substantially reduce estimates of the number of
sites, monitored and unmonitored that are out of compliance with regulatory standards.
Section 6 discusses our findings and gives some concluding remarks.

2 Background

As noted by Cicchitelli and Montanari [2012] whose work is revisited below, spatial design
and inference can be addressed within either the design-based or model-based paradigms.
They argue that the former is preferable “if inference focuses on global quantities, such
as means or totals...” It was in this context that Horwitz–Thompson estimator (HTE;
Horvitz and Thompson [1952]) estimator used in the sequel, was created to construct
design - unbiased estimators when finite population elements have unequal probabilities of
being selected in a design based analysis.

Cicchitelli and Montanari [2012] suggest the model–based approach for “constructing
a map”, meaning spatial prediction or interpolation. Within the model-based approach
two major approaches have emerged and these are reviewed in this section as they might
apply in a spatial sampling context. These approaches are associated with two categories
of important inferential objectives.

The first category concerns situations where spatial dependence is central to the in-
vestigation, It includes geostatistical modeling, for which an extensive theory has been
developed, including variograms and their cousins for representing that dependence in ran-
dom spatial fields. That dependence determines such things as where monitors of that
random field should be sited and predictors of the field at unmonitored sties.

In contrast the second category, concerns the relationship between a spatial response
Y and a vector of covariates or explanatory factors X indexed by their spatial locations
j. Interest then focuses on estimating or testing the coefficients β the determine the
relationship between the Yj given Xj at sites j through the conditional distribution of the
first given the second. Confounders not included in X will mean that conditional on X,
the {Yj, j = 1, . . . ,N } are spatially dependent. However approaches in this category
are not concerned with that dependence and assume it is nonexistent with an asymptotic
justification described below.

The first category is exemplified by the approach in D10, which analyzes the effect of
preferential sampling in a model-based geostatistical framework. The approach models the
preferential selection process and treats the selected locations as data. The parameters of
both the selection and environmental process parameters can then be estimated within a
standard inferential paradigm, for example by maximum likelihood. More precisely D10
assumes a latent, unobservable Gaussian field S over a geographical continuum (domain)
D. The sites u are selected at random in accordance with an inhomogeneous Poisson
spatial process with intensity function λ(u) = exp {α + βS(u)}, u ∈ D. The measurable
response Y is also modeled as dependent on S. Both the vectors of measurements, Y, and
sites U provide information about the underlying model parameters, including both those
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in the spatial mean as well as spatial covariance matrix for S. The required likelihood for
interest is obtained by integrating out the infinite dimensional random field S. Furthermore,
through S, U and Y are correlated in their joint spatial distribution.

The model proposed in D10 seems a reasonable if not completely general platform on
which to examine the effects of preferential sampling. Key to the approach is knowledge
of the preferential sampling process. Emphasis is on variogram estimation and spatial
prediction and biases induced by preferential sampling, that result from biases in parameter
estimation, (except in one simulation study where non–parametric variogram estimators
are briefly considered).

This paper diverges from D10 by assuming a finite population of N sampling (i.e.
monitoring) sites, uj, j = 1, . . . ,N. Note that uj could represent just the label j or more
commonly the geographic coordinates of the site, depending on the context. This is not
to say that D10’s assumption of a continuous domain for site selection is unreasonable in
all cases, for example in sampling ocean sediments by grab sampling. However practical
and administrative considerations will often restrict S to be a finite dimensional vector–
valued process over a discrete domain D. Even D10 needs to discretize S to approximate the
marginal likelihood and they do this by replacing the continuous D by a fairly dense lattice.
Sampling points then have to be mapped onto their nearest lattice point neighbours. So
populations of potential sampling sites can often be taken as in this paper to be a finite
set of possible locations such as the centroids of lakes in a fresh water survey or secluded
sites in urban parks for placing an air quality monitor.

This paper also differs from D10 in allowing Y’s covariates to be incorporated. Site
selection may well depend them, on such things such as an ‘urban - rural’ classification
or the distance of a site from a major roadway. Furthermore the analysis may well be
about the significance of the effects of such covariates or design variables on the measured
responses. The need to incorporate such covariates has been reflected in the response–
biased sample selection approach, the second category referred to above.

Scott and Wild [2011] (hereafter S11), who extend the work of Lawless et al. [1999],
survey the literature on that approach, which has origins in case–control observational
studies. There the response Y is observed (a “case” or a “control”) and then X is observed
on samples from the population of cases and controls. Models here assume a finite pop-
ulation of possible sample items, which in our case would be the sample sites u, and also
differ from that of D10 in that the covariate– measured response pairs (Xu,Yu) are as-
sumed to be stochastically independent across sites u. S11 cites earlier work that suggests
“there are real difficulties when we move away from a diagonal covariance structure.” X
may well include the geographical site coordinates as in Cicchitelli and Montanari [2012]
thereby adding to the challenge of specifying that dependence structure especially when the
random spatial field is non-stationary, a common feature of environmental risk analyses.

The assumption of spatial independence could be justified by the well known fact that
asymptotically this assumption is not a serious limitation when consistent estimates of
model’s first order parameters β, for example in the regression model for the response, are
available. More specifically Rao et al. [1998] point out that if the solution to estimating
equation (2.1) below is consistent, then the covariance of that solution can also be consis-
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tently estimated by the so-called “sandwich estimator”. Such parameters would often be
the focus of inferential analysis in spatial statistics, for example in universal Kriging. This
approach simplifies the analysis while ensuring robustness against misspecification of the
spatial dependence structure.

Two approaches for inference for methods in the second category are suggested in
S11. The first uses estimating equations in conjunction with a Horwitz – Thompson (HT)
approach. To be more precise, define R to be a sampled site indicator so that Ru is 1 or 0
according as site u is selected into the sample or not. Let

πu = π(yu, xu) = P{Ru = 1|yu,xu}

the selection probability for site u. The HT approach estimates the process parameter
vector β by solving the estimating equations∑

u

Ru

πu

∂ log [yu|xu, β]

∂β
= 0, (2.1)

assuming πu > 0, u ∈ D are known at the sampled sites.
The second approach involves a partial likelihood (PL) approach where the profile

likelihood is found by maximizing out the non parametric marginal distribution. [X]. The
corresponding estimating equation for the PL approach is∑

u

Ru
∂ log [yu|xu, β,Ru = 1]

∂β
= 0, (2.2)

which depends on the {πu}. Working under the asymptotic paradigm, the requirement
that the selection probabilities be known can dropped in favour of their being consistently
estimable.

Spatial statisticians might see the failure of the second approach unlike the first, to
reflect spatial pattern as a serious limitation. Moreover spatial location can be a useful ex-
planatory factor. For these reasons, Cicchitelli and Montanari [2012], taking a design–based
approach, augment X by constructing quasi–covariates in a matrix Z. More specifically for
location uj, they define zk(uj), k = 1, . . . , K in terms of (||uj−κk||)2 log (||uj − κk||) where
the {κk} represent spatial nodes selected by the modeller. With a model assisted approach
they assume

Eξ(Y (uj) = β0 + β1xj1 + · · ·+ γ1z1(uj) + · · ·+ γKzK(uj).

The design–based approach is then invoked and HT estimators constructed to fit a regres-
sion model of Y on (X,Z). In line with the second approach, the authors assume no spatial
dependence in the model assisting their approach. They argue that spatial pattern is pro-
vided by the mean function with the augmented covariates. This position can be supported
by the well–known duality between first order and second order modeling in geostatistics.
Misspecifying the mean function will always lead to bias in the variogram, a second order
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feature of the model. Although the paradigm of Cicchitelli and Montanari [2012] is design–
based, the idea could really be extended to the model–based context. Moreover instead of
splines other bases could well be used to capture spatial pattern. Simpson et al. [2011] also
provide some support for that assumption in their paper about computational feasibility
on spatial statistics with a title that includes the phrase “we need to forget about the
covariance function. ” (In reality that paper does rely on a spatial covariance but its role
is diminished.)

In spatial sampling, the assumption that the responses Y on which the πu depend are
known seems implausible, unlike say the case of case–controlled studies. More realistically
we might assume that these sampling probabilities are uncertain and within a Bayesian
context that they depend implicitly on these responses. If that dependence were fixed
over time, the probabilities would be learned over time as responses accumulated. In other
words they could be consistently estimated.

Although none of the approaches above explicitly refers to data collected over time,
they could undoubtedly be adapted to cover such data by allowing the {Yu} to be vectors.
Note that extending that in S10 would require an appropriate extension of the point process
model since the temporal sampling times would, unlike spatial sampling points, not usually
be according to a temporal point process. Thus they provide foundations upon which to
build preferential sampling models and ways of adjusting for the effects of such sampling.

But none of these approaches embrace the key feature of spatial sampling addressed
in this paper, that of adaption over time. Here the number of sampling sites changes
over time (Ainslie et al. [2009]). The case study in Section 5 involves British black smoke
(BS) air pollution for which the number of monitoring sites declined from nearly 2000 in
1965 to around 200 at the turn of the last century. So did the overall levels of BS due to
improvements in the management of air quality. Shaddick and Zidek [2012] demonstrate
conclusively that this decline was made by preferentially removing sampling sites with
generally lower concentrations, Thus relative to the decline in overall levels of BS, the data
increasingly overestimate BS concentrations. At the other extreme,Le and Zidek [2006]
give an example of an network for monitoring ground level ozone concentrations that has
been steadily augmented over the last few decades, as recognition of ozone’s adverse health
effects has been recognized. Here it seems plausible that the addition of sites has been
done preferentially to ensure high levels of ozone are detected.

3 A general framework

Section 2 presents a number of paradigms in which to study the issue of preferential spatial
sampling within the design– or model–based frameworks. The latter includes the Bayesian
approach although it was not explicitly mentioned in that section.

The concept of a superpopulation provides a framework for unifying paradigms for
inference and its the one we develop in this section. We suppose a discrete geographical
domain D contains point referenced sites uj, j = 1, . . . , N. Let T denote the present time
and although the spatial locations do not have a natural ordering it is convenient to use
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the vector notation Yt : 1×N to represent the sequence of responses at those sites at times
t = 1, . . . , T. These sites, which need not be on a lattice, represent a finite population
of potential locations at which to site monitors that repeatedly measure at regular times,
a random space–time field. The sites could for example lie along a river course. Further
let Y denote the T × N matrix comprised of those row response vectors.

Similarly at time t, let Xt denote a matrix of covariates or explanatory factors, which
we hereafter just call ‘covariates’ for simplicity. Then X denotes the corresponding three
dimensional covariate array. Following the theory described in S11, we will first develop
our theory conditional on X and base inference on the conditional distribution of Y given
X = x and model parameters θ. Using D10’s bracket notation to reduce notational clutter,
we denote the conditional distribution of Y, which may be characterized by its probability
density, cumulative distribution function and so on, by

[y|x ,θ]. (3.3)

If within a specified time period, responses and covariates were observed for every
spatial site in our finite population of sites to get a set W , we could proceed in the usual
way to make inferences about θ (and associated constructs). In particular, given Y =
y and X = x the conditional likelihood function would be given by Equation (3.3). The
superpopulation’s maximum likelihood estimator (MLE) of θ, denoted by θ̂ = θ(y,x) would
estimate θ, including temporal as well as spatial correlation model parameters along with
coefficients in the regression model relating Y and X. If only a random sample of sites
were selected from the finite population of sites, and their associated associated response–
covariate pairs were observed to yield a set w, then an estimator of θ̂ could be computed.

Alternatively in contexts where official statistics are collected and published or regula-
tory policy is administered, the target might well be the infinite conceptual superpopulation
of Y–X pairsW , from which W and then w have been drawn. Then θ would be the vector
of numerical characteristics of W . Following a standard approach in survey sampling the-
ory (Sarndäl et al. [2003]), we would deem the population parameters θ̂ to be of interest
as a representative of θ. (For a discussion of this issue see Pfeffermann [1993].) Thus in
summary, two legitimate objects of inferential inference present themselves, θ and θ̂. In
either case, we like D10, concern ourselves with the effects of preferential sampling on the
estimates derived from the sample θ or θ̂, depending on our perspective. But in either case,
we rely on the superpopulation model indexed by the former, which defines the latter, to
develop approaches to assess those effects.

With the general notation, ar:s = (ar, . . . , as) for r ≤ s and the null vector if r > s for
any object a, and we may express the superpopulation log-likelihood estimating equation
for the MLE θ̂ as

T∑
t=1

∇θ ln [(yt|y1:(t−1),x1:t,θ] = 0. (3.4)

As in Section 2, we let R denote the T × N matrix of indicator random variables where
the tth– row of R consists entirely of zeros except for ones in the columns corresponding
to the sites selected for inclusion at time t. Let Y(r) and X(r) denote the observed values
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of Y and X at the design points selected adaptively over time. In other words if r = (rtj),
then

Y[r] = {Y (utj) : t, j for which rit = 1}.
and so on. Note that in the preferential context of adaptive designs the distribution of R
may stochastically depend on Y, X and θ. Thus πut = P (Rut = 1|Y,X,θ,η), for some
parameter matrix η. Assume the design at time t, Rt, depends only on previously observed
values of Y and X. Under that assumption, we can represent the conditional preferential
sampling distribution of R by

[r| y, x,θ] = ΠT
t=1[rt | y(r1:(t−1)),x(r1:(t−1)), r1:(t−1),η,θ].

Given the data up to time T, how can we compensate for the effects of preferential
sampling in estimating either the infinite or finite population parameter vectors, whichever
was our objective? Section 2 suggests two approaches to this problem, one like D10 where
we model spatial dependence and the other like S11 where we ignore it. Given X = x, the
former approach would lead to the complete likelihood given by

L(η,θ)
.
= ΠT

t=1[yt(rt) | y(r1:(t−1)),x(r1:t),θ)× [rt | y(r1:(t−1))],x(r1:(t−1)), r1:(t−1),η,θ].

This likelihood includes the responses and the preferentially sampled spatial sites indices,
both of which may provide information about the parameter matrix θ. The sample MLE
would in turn provide estimates of the superpopulation MLE, adjusted for sampling pref-
erentially. Like D10, we could carry this one step further and compute the marginal
distribution of Y and R after marginalizing out θ with respect to a prior distribution.

Where the focus of interest is the superpopulation parameters, a Bayesian approach
could be used. It would rely on the posterior distribution

π(η,θ|y, r) ∝ L(η,θ)π(η,θ). (3.5)

This approach embraces that of S10 since θ could well include the conceptual device of
a latent field that underlies both the measurements as well as the preferential selection
process. If π(η,θ) = π(η,θ|ν) relies on a hyperparameter vector ν, ν could well be
estimated by Type II maximum likelihood to reduce the computational burden that a fully
Bayesian approach might entail.

The alternative approaches to the one above, presented in Section 2 ignore spatial cor-
relation and possibly incorporate spatial patterns in an augmented version of X. Suppose
θ = (β,Ψ), Ψ = Ψknown

0 representing the case of no spatial correlation. From Equation
3.4, we now get the superpopulation maximum likelihood estimating equation:

T∑
t=1

∇β ln [(yt|y1:(t−1),x1:t,β,Ψ0]

=
T∑
t=1

N∑
j=1

∇β ln [y(utj)|y(u1:(t−1),j), x(u1:t,j),β,Ψ0] (3.6)

= 0.

8



Following S11, we now have two approaches for finding calculating the sample–based MLE.
The first is provided by the HT approach which yields the following estimating equation

T∑
t=1

N∑
j=1

rtj
πtj
∇β ln [y(utj)|y(u1:(t−1),j), x(u1:t,j),β,Ψ0]

= 0.

The conditional maximum likelihood approach for estimating β would rely on the
following estimating equation.

T∑
t=1

N∑
j=1

∇β ln [y(utj)|y(u1:(t−1),j), x(u1:t,j),β,Ψ0, Rtj = 1]

= 0. (3.7)

In some cases such as that in Shaddick and Zidek [2012] it is reasonable to assume
temporal independence of the responses. In that case Equation 3.8 simplifies to

T∑
t=1

N∑
j=1

rtj
πtj
∇β ln [y(utj)|x(utj),β,Ψ0]

= 0. (3.8)

In this way the population parameters are defined.
The maximum likelihood estimating equation is generalized in the estimating estima-

tion described by Godambe and Thompson [1986] which in the case of temporal indepen-
dence above is for the superpopulation case

T∑
t=1

N∑
j=1

φtj(y(utj), x(utj), βt) = 0. (3.9)

Note that under regularity conditions, that gradient has conditional expectation given the
superpopulation parameters, equal to zero, a property referred to an “unbiasedness”. In
fact, Equation (3.9) can be used to define an estimator for any choice of kernel φ provided
it is unbiased. Thus for example, Binder and Zdenek [1994] formulate a general approach
for complex sample surveys based on estimating equations.

Example 1. Suppose for all j and t

Ytj = µt + εtj
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where the coefficients are fixed but unknown constants while the residual vector is tempo-
rally and spatially uncorrelated. In other words,

εt : N × 1 ∼ NN(0, σ2In).

Then θ = (µ, σ2) and the parameters of the population at time t are µ̂t = Ȳt· and σ̂2 =
N−1

∑
j(Ytj − Ȳt·)2. We get these by solving the estimating equations:

N∑
j

(
Ytj − µt

(Ytj − µt)2 − σ2

)
= 0.

Applying the HT approach as suggested by Binder and Zdenek [1994], we get a design
unbiased version of the two superpopulation estimates. If the superpopulation model were
log-normal, the approach above would yield the geometric mean instead of the arithmetic
mean with preferential sampling weights entering into the exponents of the factors in that
mean.

4 Implementation

Methods are required to implement the theories described in previous sections. Choices
will necessarily depend on the context so no single approach can be developed to cover
them all. However, the superpopulation model and the finite population parameters it
generates as an MLE (θ̂) are the starting points.

4.1 A general result.

A general class of methods have a parameter vector of the form θ = (θ1, . . . ,θT )′, vector–
valued functions H and h1, . . . ,hq along with superpopulation estimates defined by solving
Equation 3.4, which can be represented in terms of the site specific responses by

θ̂t = H

{
N−1

∑
j

(h1[yt(uj), xt(uj)], . . . ,hq[y(uj),x(uj)])

}
. (4.10)

If the {πtj} are known or well-estimable in such cases, θ̂ can be estimated by

ˆ̂
θt = H

{∑
j

rtj
Nπtj

(h1[y(uj),x(uj)], . . . ,hq[y(uj),x(uj)])

}
. (4.11)

Justification for this choice comes from the the unbiasedness of {
∑

j
rtj
Nπtj

hl[y(uj),x(uj)]}
as estimates of their corresponding population averages.

Regression of Y on X is an important example where for T dimensional vectors a and
b :

H(a,b ) =

 a1/b1

aT/bT

 ,
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h1[yt(uj), xt(uj)] = yt(uj)xt(uj) and h2[yt(uj), xt(uj)] = xt(uj)
2. This model would allow

the relationship between Y and X (e.g. an explanatory factor) to evolve over time.

4.2 Stochastic approaches.

In our context unlike that of survey sampling, site selection probabilities are generally
unknown and we now turn to approaches for selecting them. Assume for now that the
sample size nt is fixed for all times t so that πt· = nt or with ξ = πtj/nt, that∑

j

ξtj = 1.

Two general approaches now present themselves. The first assumes a purely stochastic
relationship between the ξtj and the {y(r1:(t−1)),x(r1:(t−1)), r1:(t−1),θ}. A convenient choice
for the required conditional distribution when θ = (θ1, . . . ,θT )′ has a density proportional
to

Πj(ξtj)
ζtj−1

where ζtj depends on θt. Although this parameter vector is not known, we assume the
experts selecting the design are guided by prior knowledge of its elements. This conditional
distribution then gives the marginal result

E[ξ−1
tj |θt] = (ζt·(θt)− 1)/(ζtj(θt)− 1)

or in other words.
E[π−1

tj |θt] = (ζt·(θt)− 1)/(ζtj(θt)− 1)nt.

Equation 4.11 then gives the unbiased estimator

ˆ̂
θ∗t (st) =

∑
j

ζt·(θt)− 1

ζtj(θt)− 1

ntrjt
N

h[y(uj),x(uj)]. (4.12)

where h[y(uj),x(uj)] = h1[y(uj),x(uj)], . . . ,hq[y(uj),x(uj)].
Estimates of θt can then be plugged into this last expression. Alternatively we can let

them be learned through a Bayesian updating algorithm if we adopt the model in Equation
3.5.

Example 2: Suppose Ytj = βtj + βt + εtj. Then ζtj(θt) ∝ βtj, j = 1, . . . , N might
be deemed a reasonable choice in contexts like that addressed in D10.

An alternative stochastic approach to characterizing the {πtj}, one that incorporates
the problem of estimating the {θt}, supposes as a purely conceptual rather than literal
device, N types of particles, each type arriving during time interval t at its counter in a
Poisson process. To describe that process, we first recall that Yt(rt) denotes the measured
responses at time t. Next we let

Λt = {r1:t−1,Y1(r1), . . . ,Y1(r(t−1)),θt,ηtj}.
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Now endow the Poisson processes with intensity functions

λtj = λtj(Λt), (4.13)

for particles of type j = 1, . . . , N . The counters are parallelizable, so when a particle of
type j arrives at its counter, the counter counts 1 and no further particles after that during
the specified time period. The elements of St are the labels of the counters that have
registered a count during the time interval. In Equation (4.13), the {ηtj} are site specific
random effects that can be correlated over space. Note that the intensity depends on the
indices of the sites previously selected for monitoring as well as the values measured at
those sites. Thus the intensities can be selected to express the goal of retaining previously
selected sites and just adding new ones, an increasing staircase of monitors. Alternatively,
as in the case study in the next section, they may be made to remove sites according to
what was seen at monitoring sites in the past, a descending staircase.

The conditional expected size of St as

E[Rt·|Λt] =
∑
j

P (Rtj = 1|Λt)

=
∑
j

[1− exp (−λtj)]

≡ nt(Λt).

Furthermore, the conditional probability mass function for Rt is

P (Rt = rt|Λt) = Πj exp (−λtj)1−rtj [1− exp (−λtj)]rtj

' Πjλ
rjt

tj exp (−λtj)
= (λt.)

nt exp (−λt.)Πjκ
rtj
tj

where

κtj =
λtj
λt.
.

To get the component of the likelihood generated by the selection of the sampling
sizes, we need to compute the conditional distribution of St given just the event Λ0

t =
{r1:(t−1),Y(r1:(t−1)),θ}. The result is

P (Rt = rt|Λ0
t ) = E[Πj exp (−λtj)1−rtj [1− exp (−λtj)]rtj |Λ0

t ].

The contribution to the overall likelihood for time period t is therefore

f(yt(rt)|xt(rt),θt)P (Rt = rt|Λ0
t ) (4.14)

and it would be maximized to find an estimate of θt including the non random effects in
the intensity function.
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4.3 Regression.

Given the requisite temporal data, regression provides a natural approach for estimating
the {πtj}. Here we relax the requirement of specified sample sizes and allow these to
be random. More specifically, at time t each sight j is included or not according as a
biased coin toss yields heads or not. Its probability of heads πtj, depends through a
regression relationship, on all the data obtained prior to time t and the sites that were
selected in previous years. Fitting the model within a Bayes or non-Bayesian paradigm
can be done in the conventional way. The challenge here is in the model selection, in
other words, finding the appropriate predictors from the class of all possible metrics that
could be computed from previous exposure data. A formal model selection approach will
generally be impractical, necessitating reliance on some context specific knowledge to help
reduce the class of possibilities. For example, the case study described in the next section
involves about 700 initial sites taken as the finite population, from which successively
smaller numbers of sites are selected over the years that follow. The large number of
spatio-temporal aggregates that could be chosen as possible predictors would force some
preliminary reduction in the number of possible aggregates. One such choice is made below
in Section 5 for illustrative purposes. The implementation of this approach will rely on
Subsection 4.1, notably Equation 4.11.

5 Case study: black smoke over the United Kingdom

The companion paper [Shaddick and Zidek, 2012] clearly shows that sites for monitoring
ground level black smoke concentrations in the UK were preferentially removed from 1970
onwards.I this case study we aim for the paper’s stated goal of adjusting population level
estimates of black smoke levels to make them unbiased. In particular we develop a way of
adjusting estimates of overall average annual concentration levels as well as number of sites
out of compliance, both those currently monitored as well as those that have preferentially
removed over time.

We begin with a summary of the more detailed description given in Shaddick and
Zidek [2012] of the monitoring program for black smoke (BS) in Great Britain. There air
pollution has been a concern for many centuries and the association between air pollution
exposure and mortality or morbidity has been a public health issue for over 700 years.
However the subject has only be- come a global health issue in the last fifty years (Firket
[1936]; Ciocco and Thompson [1961]; Ministry of Public Health 1954). As a result attempts
have been made to measure air pollution concentrations in a regular and systematic way.
However, the different directions chosen in making these attempts due to the different
jurisdictions in which they were made, led to variations in the pollutants measured, how
they are measured, where they are measured and how the results are reported. Moreover
over time many of the networks have changed as emphasis changed on pollutants and areas.
During much of the twentieth century, concern has focussed on soot (or black smoke) and
sulphur dioxide from industry and domestic fires and measurement methods have been
used in different areas.
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Early air pollution control legislations [Garner and Crow, 1969, Stern et al., 1973] and
more recently air quality standards have been related to a list of criteria pollutants (par-
ticulate matter (PM); Ozone (O3); Sulphur dioxide (SO2); Carbon dioxide (CO); Nitrogen
dioxide (NO2)). Science has supported environmental policy making, in particular that
which shows air pollution is harmful to human health and provides quantitative estimates
for environmental health risk impact analysis. In 1961 the worlds first co-ordinated na-
tional air pollution monitoring network was established in the UK using black smoke and
sulphur dioxide monitoring sites at around 1200 sites. The earliest epidemiological studies
found that exposures to very high concentrations of particulate matter had adverse effects
on human health (Firket [1936]; of Health [1954]). Many focussed on London due to its
large population and early availability of data on health outcomes and pollution levels.

The data on annual concentrations of black smoke used in this case study were ob-
tained from the UK National Air Quality Information Archive. The data were collected by
a monitoring network established in the early 1960s. By 1971 it included over 2000 sites.
As levels of black smoke pollution have declined, the network has been progressively ratio-
nalized, reduced, moved, replaced. It currently comprises about 220 sites. Almost certainly
these changes were not made purely at random over the monitoring sites locations. Most
plausibly those in the most polluted areas had the greatest chance of retention, leading to
the possibility that they were in areas of high mortality, and informative sampling. Daily
average black smoke has been shown to be a reasonable predictor of PM10. In general,
PM10 concentrations are usually higher than black smoke except during high episodes, and
hence, if smoke exceeds the PM10 limit, it is likely that PM10 has also done so [Muir and
Laxen, 1995]. Black smoke (BS) is one of a number of measures of particulate matter, other
examples including the coefficient of haze (CoH), total suspended particulates (TSP), as
well as direct measurements of PM10, and PM2.5.Each has been associated with adverse
health outcomes (for PM10, Samet et al. [2000]; for PM2.5, Goldberg et al. [2001]; for TSP,
Lee and Hirose [2010]; for black smoke, Verhoeff et al. [1996]; for CoH, Gwynn et al. [2000]
). Attempts have been made to standardize the measures of pollution by converting the
measurements into ‘equivalent’ amounts of PM10, for example PM10 ≈ 0.55 TSP, PM10 ≈
CoH/0.55, PM10 ≈ BS and PM10 ≈ PM2.5/0.6 (Dockery and Pope [1994]).

Our case study is based on the black smoke monitoring network located at a resolution
of 10 metres and measuring annual average concentrations of BS (µ g/m3) operating be-
tween April 1966 and March 1994 (inclusive). The data come from the Great Britain air
quality archive (www.airquality.co.uk). Air pollution statistics for each site are reported
in ‘pollution years’ (April-March) and include mean concentration, standard deviation and
number of valid reporting days. Data were obtained for all sites operating within the study
period, a total of 3016 sites, and the data filtered to remove all sites which were located in
non-residential areas, which fell outside the study area (defined as Great Britain, meaning
that Northern Ireland sites were excluded) or for which air pollution data were lacking.
Data were obtained for all 2382 sites operating within the study period and sites excluded
if located in areas that were not wholly or partly residential.

To unbias estimates of the annual population levels of black smoke in Britain we use
the implementation strategy description in Subsection 4.3. For this case study, we consider
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the measurements from the network over the period from 1970 to 1996. We use the 624
sites that were operational in 1970 and which had at least 5 measurements in the follow-
ing 25 years, and these sites define the finite population underlying development of our
theory above. In other words, we will think of concentrations measured at these sites as
characterizing the BS field over the UK. For each year, t, data are available from nt sites,
t = 1, ..., 26. Measurements, Zit, are the log of the annual means of the 24 hour mean
concentrations of BS divided by a normalization constant to make them unitless as they
must be if their logarithm is to be applied. Over the study period, the number of sites
was reduced from n1 = 624 to n26 = 193 with the yearly means over all sites,

∑ni

i=1 Zit/ni,
falling from 60.5 to 9.3 µ g/m3 over the same period. A log transformation is appropriate
for modelling pollution concentrations, because in addition to the desirable properties of
right-skew and non-negativity, there is justification in terms of the physical explanation of
atmospheric chemistry [Ott, 1990] and from hereon, Yit = log(Zit) is used.

A logistic model is used to estimate the probability of a monitoring location being
present in any particular year. The probability, πu, of a site u remaining in the network
between year t − 1 and t is modelled as a function of the average concentration at that
of inclusion in year t are modelled as a function of the mean concentration at that site
over the previous t − 1 years after adjusting for the trend in concentrations over time by
subtracting the yearly means, Ȳ.t =

∑nt

i=1 Yit/nt.

log(
πj

1− πj
) = α + β(Yjt − Ȳ.t) (5.15)

Figure 1 (a) shows the results of fitting a series of logistic regression models for
t = 2, ..., 26. In the period 1971-1981, the values of the slope are close to zero and non-
significant indicating that the previous levels of BS at a site had very little effect on its
remaining present in the next year. There is a clear decline in the values of the intercept
parameters indicating that the overall probability of sites remaining in the network year-
on-year is decreasing, reflecting the reduction in sites over this period from 623 in 1971 to
277 in 1981. There was a dramatic reduction, of almost 50%, in the network from 1981
to 1982 with a fall in the number of sites to 140. From 1982 onwards the decrease in the
intercept parameters continues, reflecting the continuing decrease in the number of sites.
After this point, the effect of the average concentrations over time at a site, represented
by the slope parameters, has a much more important effect. This suggests that was pref-
erential sampling in the choice of which sites remained in the network with sites recording
high concentrations more likely to stay in the network.

Two characteristics associated with the responses over the years for 1970 and after at all
624 sites seem of natural interest. The first would be the annual averages across these 624
sites as these could be published to show the effect of regulatory policy over time. However,
the second characteristic seems of greater operational importance, it being the number of
the 624 sites in non–attainment, that is which do not comply with of air quality standards.
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Figure 1: Results from using a logistic regression model to estimate sampling probabilities.
Panel (a) shows the coefficients from the logistic model fitted for each year; dark green and
dark blue dots denote the intercept and slope coefficients respectively with corresponding
light colours showing the limits of 95% confidence intervals. Panel (b) shows the annual
means over all sites (blue line) together with the corrected values (red line). Panel (c)
shows the number of sites exceeding 34 µg/m-3 (blue line) together with the corrected
values (red line). In all three panels, the vertical pink line indicates 1982, the year when
the network was dramatically reduced in size.
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This number is a surrogate for the cost of mitigation for putting the BS concentrations into
compliance. Thus for example, as part of the analysis of the impact of the various ozone
standards considered by the EPA’s CASAC Ozone Committee in 2006, the EPA Staff
predicted the fraction of monitored counties in the United States that would be out of
compliance. For the standards that were finally proposed by the Committee, that percent
was found to be 86%. Although the US Clean Air Act (epa.gov/oar/caa/title1.html) of 1970
under whose mandate the CASAC was created, rules out economic impact in consideration
of standards designed to protect public health, nevertheless policy making cannot ignore
the cost of attainment that can be substantial.

Figure 1 (b) shows the yearly averages over time (blue line) together with the corrected
versions using Equation 4.11 (red line). It clearly shows the adjustment reduces the es-
timates of the average levels and the effect of the marked change in the network in 1981
which changed the effects of the logistic regression model, resulting in an over-correction
for this year. In practice this could easily be corrected by excluding data from the most
recent year from the logistic model. However, this anomaly does serve a useful diagnostic
purpose and in general, such marked changes could point to the need for further investi-
gation of underlying changes in the network. Figure 1 (c) shows the number of sites each
year that exceed the 1980 EU guide value of 34 µgm/3 [European Commision, 1980]. The
blue line is the number of exceeding sites based on the recorded data with the red line
the numbers after adjustment for the preferential sampling. Table 1 shows the number of
sites exceeding the EU limit of 68 µgm/3 and the guide values of 51 and 34 µgm/3 where
a reduction of the number of exceedances can be seen when adjusting for the preferential
sampling with the effect being more marked as might be expected for lower values of the
cut off point.

6 Discussion and conclusions

A number of methods have been suggested in this paper for modeling the probability of
selection in preferential sampling within the general framework we have developed using
a superpopulation modeling approach. Taking a public policy perspective, we have em-
phasized the Horwitz–Thompson (HT) approach to mitigating the effects of preferential
sampling in order to get unbiased estimators.

The case study has demonstrated use of the method where the parameters being esti-
mated are numerical features of the finite population of exposures at sites in the UK that
in 1970 were measuring black smoke. Subsequently only subsets of those exposures were
measured and the case study looks at the use of the methods we have developed, to adjust
these estimates for the effects of preferential sample. The results show reductions in the
estimates, illustrating how the preferential siting of monitors where exposures are high,
gives an exaggerated impression of the level of black smoke and the number of sites that
are in noncompliance, using various hypothetical regulatory standards.

The case study does not assume that it is the sites with low concentration levels
that were removed in the years since monitoring started. Support for that hypothesis
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Limit 68 µmg-3 Guide 51 µmg-3 Guide 34 µmg-3
Actual Adjusted Actual Adjusted Actual Adjusted

1972 129 123 236 225 402 384
1973 73 68 153 143 327 306
1974 31 28 94 84 211 189
1975 21 19 58 52 223 201
1976 19 18 50 47 201 189
1977 7 6 23 20 106 94
1978 7 7 18 17 94 87
1979 8 7 21 19 75 71
1980 0 0 6 6 22 21
1981 2 2 11 10 47 42
1982 0 0 0 0 18 9
1983 0 0 10 5 24 16
1984 0 0 0 0 10 8
1985 0 0 0 0 5 4
1986 0 0 0 0 12 6
1987 0 0 0 0 15 7
1988 0 0 0 0 12 3
1989 0 0 0 0 0 0
1990 0 0 0 0 0 0
1991 0 0 0 0 0 0
1992 0 0 0 0 0 0
1993 0 0 0 0 0 0
1994 0 0 0 0 0 0
1995 0 0 0 0 0 0
1996 0 0 0 0 0 0

Table 1: Number of sites exceeding limits and guide values for black smoke (see text for
details). Number of exceedences based on recorded data are presented together with values
adjusted for preferential sampling.
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emerges instead from the logistic regression analysis, which shows that higher probabilities
of inclusion attach to such sites. A particularly dramatic change in that direction occurred
in 1981 when the network was reorganized owing to falling urban concentrations and to
comply with EC directive 80/779/EEC [Colls, 2002]. Overall the method looks promising
where it can be applied.

But the HT approach will not always be appropriate and then a likelihood based one
may be feasible provided that the preferential sampling can be modelled. That could be the
case in the context of air pollution and health in epidemiological analyses, for as Guttorp
and Sampson [2010] point out the air pollution monitoring sites may be intentionally
located for a reasons such as the need to measure: (i) background levels outside of urban
areas; (ii) levels in residential areas; and (iii) levels near pollutant sources. Then the
method in D10 or the alternative in Subsection 4.2 may be useful. An important case is
that in which the network is augmented in successive time periods rather than removed as
in our case study [Le and Zidek, 2006].

The approach taken in the case study worked since representatives of the unmonitored
sites remained in sample so that the selection weights would appropriately compensate for
their under representation in the computation of population statistics. In the absence of
such representation or good background knowledge of how the biased selection was made,
there would seem to be no alternative but to augment the network with some, possibly
temporary monitors. That leads to a design problem about the optimal selection of those
sites. In this case, then we would be unbiasing the design rather than unbiasing the
estimates, and that would need a different approach than that in this paper.

We conclude by emphasizing the importance of the issue studied in this paper as well
as D10, and the need for much more work on it, given the large amount of environmental
monitoring being done today and the need for good data in environmental risk analysis
and management.
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