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Abstract
This paper presents o multivariate spatial predictioa methodology in a Bayesian framework
The method is especially sulted for use In enviroametries, where vector-valued resposses are
observed at a small set of ambient monitoring stations (‘gauged sites’) at successive time points,
However the stations haw varving stast-up tisses 30 that the data has o “stasrcase’ pattern
(‘moactone’ pattern in the terminology of Rubdn and Shaffer 1990). The lowest step corresponds
to the mewest station in the monitonng network.

We base our approach on a hierarchical Bayes prsor tnvelving a Gaussias generalized laverted
Wishart (GIW) model. For givem hyperparsmeters, wo degrive the prodictive distribmtion for
curvently gueged sites at times prior to their start-up when no measurements weee taken.

The resulting predictive distribution is a matrix T distribution with appropriate covariance
parasneters and degrees of freedom. Wo estimate the hyperparameters using the method of
moment (MOM) as an easy-to-implement alternative to the more complex, Expectation and
Maximization(EM) algoeithm. The MOM in particalar gives exact parameter estimates and
imvolves less cumbersome calculations than the EM algonithm,

Finally we obtain the predictive dastribution for enmeasured responses at ‘ungauged’ sites
The results obtained in thes paper allow s 1o poal the data from sites that measure differont
pollutants and also to treat cases where the observed data monitoring statioa have & monotonic
‘staircase’ structure.

We demoanstrate the use of this methodology by mapping PM; 5 Selds for Philadelphia during
the pesiod May 1992 to Septesaber 1993, Large amousts of data misdng by design make this
A ation particularly challenging. Mowever give empirical evidence that the method performs
well.

Key wordy end Phruses: Bayes, Hierarchical, lovested Wiskast Distribation; Massix T- Distes-
bution: Method of Moment; Posterior Distribation; Predictive Dastnibution:; Spatial Interpola-
ton.

1 Introduction

A strong reocatson hetwees pasticulate polletion fields and a varlety of negative human
bealth outovenes hiss Devn demnonsteated thuough a seties of epidemiclogical studies {¢f. Dates



et al 1990, Burnett et al 1994, Dockery et al 1992 and 1993, Pope et &l 1990, Schwarz o
al 1953, Ostro et al 1991 and Roemer ot &1 1993), Interest has concentrated particularly on
two partiches sives, PAMys and PA,, The smaller of these two {(and even finer particles) is
comeonly thought 1o be a greater risk factos. However Smiith et al (2000) recently published
evidence to the contrary and provide a source of references Lo oo this issue.

Critics have srgwed that meassrement error compeomises the quality of these epidemiological
stodies {cf Levy et al 2000). [n particular, epldemiological stodies have often relied on
measurements obtained at ambient monitoring sites even though these may be situated a long
way away from the subjects in the stody. Thus they do not forecast well the true personal
exposure sustained by these subjects. This deficiency and the criticisan that can ensuro has lod
to the recognition of the need to spatially peedice 1 ¢ interpolate random pollution fields with
a view to getting impeoved estisaates of true exposure

Such studies may include health outoomnes over a loag period of time, for example 6 years in
the case of Zadek et al (1997). Over that such kong periods not all carrently gauged stations will
necessarily have been kn operation. [n this case, imwstigatoes will need 1o "smpute’ or "backeast’
in the terminology of this paper the unmeasured values at these sites in addition to predicting
unmeasured valoes at the sttes, such as the centrobds of census tracts, where measarements were
never made. For chaonic diseases with long latency such as cancer where cumulative exposare is
likely mote relevant, the estimates for concentration levels are particularly impaortant. Impetd
lewvelds like these have been wied in o number of stedies (¢.f Dudidek ot al 1995, Zidok et al
1997).

In recent years, & Bayvesian methodology for both temporal and spatial interpolation has
bewn developed starting with that of Le and Zadek (1992) as an altesnative to the well-ksown
method of Kriging (c.f Cressic 1991). The method has further been developed by Beown et
al (19904a) and Le et al (1997) o dead with the multivariate setting where possibly ot all
monitored sites measare the same set of pollstants. The method produces the joint predictive
distributson for several locations and diffezent Lime points using all avallable data, thes allowing
for simmltanecous temporal and spatial isterpolation. Asother advantage of this method s
that it does not assuzme the random field to be spatially isotropic. Furthermore, it allows for
uncvrtainty associsted with the meas and the spatial covariance of the fiedd to be incoepoented
in the peodictive distribution. The problesn of Snding Bayesian spatial prediction has been
comsidered by various rescarchers; Kitanidis (1986), Handeock et al (1503), Cul et al (1995),
De Ofiveira et al (1997), Gandard et al (1999) and recently Kibels (2000) to mesticn a fow.
The specific problem of estimating the covariance fields for a noa-stationary random field has
been considered by Sampson and Guttorp (1092) and further in Meiring et al (1997). This
peoblem has received & lot of consederable recent attention notably from Smich (1996), Samian
et al (2000), as well as Schmitt and O’hagan {2000).

It the paper we extend the usivasiate theoey of Le ot al (1999) 10 the mueltivariate case and
thereby obtain an empirical hierarchical Bayesian method for temporal and spatial isterpols-
tion using all mailable data. We base the method on the Gaussian and Generalized [averted
Wishart (GIW) distributions. Specifically, we assume the responses follow s Gaussian distri-
bution and the correspoading covartance follows a Generalized Iavertad Wishart (GIW) prioe
distritmtion. We adopt a Kronecker product in the GIW maodel for the covaziance mateix. This
paramotrization redooes the numsber of parameters and more impoctantly allows us to estimate
the parameters in ungauged sites, i.e. cemsus tracts im the applicatica treatod in this paper
where we do not have any observed data. Although the extension s somewhat formalistic, it
has advantages over Le et al (1999). First, this paper will holp to sizplify the barden of finding

2



ectimates of the potentially very lage duncasional hyperparameters. Secondly, it will enable
estimation of the hyperparameters wsing the method of Sampson and Gutrorp (1952; hereafter
SG meskod or algorithan) lnvolving the predictive distribations for ungauged sites. We develop
a method of moments approach as an alternative to the much more computationally intensive
EM algorithm, which has provaded in the Appendix. However the computer (computational)
prograsn for the EM algorithm yt 1o be developed, which is under the future investigation, It
s noted that we assume there sre po randomly misting data and return to this issue in the
We structure this paper as follows. The main theoretical results about the predictive dise
tribution for gauged sites, thoee at which measurement are taken are described in Section 2.
Parameter estimation using the method of moment Is discussed in Section 3. The peedictive
distribution for the unmeasured responses at usgauged sites and the related parsmeters esti-
mated by the SG method follows in Section 4. As an application, Philadelphia data are been
consddered in secthon 5. Finally, a sumanary and coscluding remarks appesr in Section 6.

2 Main Results

2.1 Notation
For notational convenience, Jet:

n = pumber of time points {eg. samber of months);

u = pumber of locations with no esositors - called engauged sites;

g = pumber of Jocations with monitors- called gauged sites;

- m‘m‘..-'*“;

P = number of resposses at both ungasged and gsuged sites.
The 9 gauged sites are organized into & blocks of stations where the g, (1 = 1,2,.. ., k) stations
in the jth block have the same mamber of time points my at which no measerements are taken
by design. Thew blocks are sumberod so that the cloervend messuremnents have a “rising »

staircase” structure, that is,
My 2 My 22y 20

Devnote
o the nsponse variables partitiomed for the gauged and ungauged sites by
Y = [y, ¥l

i )

an n x gp matnx, denotes the unobecrved and observed resposses at gauged sites, and

~ Y™, an n x up matnx, denotes the anobsesved resposses at unganged tites,

= V5 an my x gyp mateix, denotes the unobserwd responses at the g, gauged sites
for the m;, time points.

where



—}’W.u(u-m,)xg,pnm.dmoms&obwwdmu the g, gauged
sitew for the (m = m,) time points;

o observed measurements at the gauged sites by
D« {yimeal} Lyl yodl . i),
o usclserved responses by
y__..{}ﬁ.}'bll.....r(lﬂ};
o uncherrved responses in gauged sites in blocks 1 to k by
yol -t (¥, v},
o reaponses from gaveged blodss § o A, lecludiog both obeeeved and unobeerved stacks by

o= (i) [(5) - (2]

o the responses from all gauged sites by
Y Lyl

The covariance matrix ¥ of demession (u + 9)p % (u + g)p over gauged and ungsuged sites are
partiticaed conformably as
- b5

where X is an wp x up matrix. The covariance matrix S of dimension gp % gp oa the gasged
sites is further partiosed by blocks as

vinl L. siel il ... Taal
LAl and Sinewl ]
vnal ... yis el L wind
The following 1-1 transformation (Barlett, 1933) of the matrix E* is used:
Lo = Einl,
r, L QX‘shn» N)"gﬂlnt—-aw'
7y = (Sineienl)-ipinecanial,
where
Sl
Tineomial - :
il
h) -]... . k-1 It tﬂmponau tondeﬂnt}:u(an then be obtained from [rﬂ"l'..,.7...,),.. .,(l',,r;)

by investing this transformation. However the latter proves a msch moce cosvwsmnt parsme-
tertzation of our model.



2.2 The Model
The respoase matrix, ¥, is sssumed to follow the Gaustian.Generalized-Inverted-Wishart
(GIW) model specilieed by:

YIE~NO I, eE)
|

E~GIW(W,46),

where & s a function of & set of parametess involwad in ganged and ungaaped sites, ieo. ¥ =
(2, AW AM_ =¥ 1) 0 s & px pcovariance matrix for responses at each site assumod coastant
from site-tosite, § = ™ 4% & represents the Kromecker product between matrices and
GCIW reprosents the Generalized [rverted Wishart distribution developed by Brown, Lo, Zidek
(1994h). The Kromecker product is chosen because it reduces the number of parameters greatly
and moce importantly allows us (o estimate the paramsetors in ungauged sites Lo, consus Lincts
where we do not have observed data. Here N,(0,0) denotes the p dimensional Gaussian
distribution with mean 0 and covariance matrix ©.

mmqumlrnordmbunmfor L in (1), can equivalently be presented in terms of new
parameters (¥, oM ™) Specifically, £ ~ GIW (9, 4)

[ ¥ L GIW(n. &%),

{ MMy (11", He g r‘") : (2)

M~ IW(A™ @ Q, ™),

.\

where 1 s 8 function of parameters for gauged sites. That &s g = [ A A H ny) (f =
12k 1), 69 = [5Gy G, T o T ol — SAGE)-TESM 15 the nesidual
covariance of Y™ residuals after optimal linear prediction based on Y|, ¢ = (£#) 15 g
the slope of the optissal linear predictor of Y™ based on Y and IW (@, §) denotes the Inverted
Wishart distribation with scale matrix P asd dogroes of freedous 8. The By peroovariance mateix
A ® 0 &s partitioned comfocrmably with the partition of £,

The distribution of £ is furthor specified in terms of {Sa, (Cacr, fane), -, (T, 1)) as

follows:
S~ IW(A @0 &)
7y |y~ N(rog, Hy ® Ty); 3)

r, ~ !“"J" O ". 6,).

for yw=1,....k -1, M, 52 gp x g,p matnix while the §; represent the degrees of frecdom for
the 7** Block, Yep 8 a qap * gup, mateix, 75 ix 8 (500 4+ o+ )P X gp matrix, and [ is a
94P ¥ 9;p matrix.

The hyperparametess involved in the GIW model are written as

How (AN SN S g A 8,0, Iy, Hy A B G =0, k-1 (4)
The GIW distribution &5 8 conjugate prior for Gausséan distributioves. This prioe is very Hexible

and quite natural to deal with the staircase stroctum of the observed data.  For example,
differcat degroes of freedam for each of the blocks can be experessed through the by pesparameter



vector 0. More detasls on the charscteristics of the GIW distribation are given in Beown ¢ al
(1994b), and Le et al (1995). In the following section we will present the mamn result of the

paper.

2.3 The Posterior Distributions

Since the posterior distribution s an essential elomest of the peadictive distribaton, we
develop and (avestigate the relevant pesterior distributions in this section. Following Le et al
(1909) the posterior density can be obtained and expeessed by the following theorem.

Theorem 1. The pount posterior demsity, f{E" | D, H) is given by

L

SIS DN) = f(Za | DM ] £07 | BT, 0)(T, 1 D,K)
Izl

wsth )
S | D H~TW(ALE +n - my),
B IDE.H~N (1 Het,), (5)
T | DM~ IW(ALS),

where:

A = Aonsyeyys,
..\, = \eNs (M - Y,"’""‘“‘.-.,)

x [!....' + (Y'u)'iv-ﬁl)‘ ”""’i’,qu-.ll" (ym =L ,;{‘,ol""m);
8) = [+ (o) ]
tom B[ty s () (o)
3, - & in-my (6}

‘“j‘lc-o-.*-‘v

Gaussinn and Inverted Wishart distributicas esing the theorem above, Other types of postenor
expectations relevant o the hyperparameters estimations are given in Section 3,

2.4 The Predictive Distributions for Gauged sites

Dealing with the complex monotone (stairesse) data structsres confroated in this paper
forces us to pay a heavy sotational pace. Correspoading to the two pazte of the Whewewin below,
we introduce notation to facilitate its prosentatson:



() (e, )= (15 )
(AP. A"l)( my x my % =) )

Ayl Al {n—my) xmy; (n—my)x(n-m)

=, 4+ Yivoaly (Yoo aly, forj=1,2... k=1
Moreover, for ) = 1... .k,

“(Ot,m - l{f) + Al_!,’(,;%')-l(yh}l - 5{3},):
Wiy = gt (Al - AfjAl)- Al

o‘ 80 3 - 1
'?t!m 3’—_";"—;10""" - WV (AZ) Yyl - u‘&,):

Then Gollowiag Le ot al (1099), the peodictive distribution of the unobserved respotses condi-
tioned om the observed data can be expressed in the following theorem.

Theorem 2. The predictive distribution of the amobserved resgonaes Y., conditional on the
observed data D and the Ayperparameter set M for gsuged siles is given by

(Yonet | D7) ~ h' (Y9 | Yol D 3) « (YUl | D, %), (8)
=i
uhere the tuv components of the conditional dutnbutions are specifind as followe.
(i
(V1 D) ~ by wpn (0, 80l © i 810 ) 5 ()
(1)
(v | yOhor—o0), D, H) ~ tu, gy (s iy © ¥ il - (10)

We refer 1o the factors in (9) and (10) &8 dackessting simce they give the joint peedictive
distribution of the response wariables at the ganged sites during their ungauged time period.
Corollery 1. The means of the predictive dutribulions in Theorem £ (and wied in 7) are goven
below.

wl = E (M | Do) = E(u, | D. M) + E (A7 | D %) (AZ)(Y#! - ulth)
Jor j=1,...,k= L Here E (), | D,H) and E (A%} | D, %) are recursively computed as
s(“‘b'l’ | D, ") e Jl‘..}"'_dm'

E(/lw | D.‘ll) = ‘{,'u.-al,,‘ (ll‘i?}""‘!)'



ot o [ Y[
weeie () ()]

For known hyperparameters, the enolserve! response mateix follows a Matrix T distributios
with appropeiate covariance matrices and degroes of freedom. However, for unknown hyperpa-
rameters, the peodictive distribution can be approximated by its estimates obtaned by usisg
the method of momests. To obtain an estimate for the comariance matsix with Kromecker

structure is a challenging peoblem, which we discuss in the next section.

3 Estimation of Hyperparameters

In this section, we discuss the eetimation of the hyperparsmeters in . which involves two
steps. In the first step, where data are available for dizect estimation, the hyperparameters are
fossx] by wwing the method of moments based om tho available data. The second step invalves
the estimation of the hyperparametors associated with the ungauged mites. This step is doae
usimg the spatial covariance mterpolator developed by Sampscon and Guttorp (1992) aad has
discussed in Sectices 4 and 5.

3.1 Method of Moment Estimation Equations

Here we discoss the estimation of lypergazameters in X of Equation [4). Specifically, we

derive the method of moment estimating equatica (MEE) corresponding to the model developed
in the previous section that involves the Km«h.umtup. To decive the mcenent estimating
equations, we comsider the joint distribation of (¥;™ ™ )

s (vin e e st (0 ) fo)

s (9 s (e 02, 0 ) s,
Sy =g+ 1) %ty O (B —qup+ 1) 204 -p+1). P
il

Unconditicaal on £ the seccad momests of the margizal distribution of ¥.* are

var ¥, e S
"= ~ap=1'
. ¥, (1= er( 1y x Var(y3?* "))
. ’ I 1 et ) .
“r[,a ]-(f‘,t‘(}” )fb,+ ‘)-’,’-‘ »
ane ',I’bpﬂv—.l. ’ihl] w Var (Yiﬂnh-*‘) f~,
wheee j=1,2,.. k~landtmmgs],.. . .0
Cousider the following restrictions,
W s, R, J, :
!’,-| —( _.‘”';. ”' & m‘;lf‘, e ym?2. . . k1 {12)



sl Hooy = @, which follows from the Bastiett decomposition of the imverted Wishart
distribution, we obtain the Var (V¥ /) as

gl o Var (YA s + a0y o), Var (Yo
Var (v a]) - (7‘” c;,o(' E}i,,... l;)”,”.j J ?’c:'b(’g"""))) s

where o, = Fﬁ | P I':Jp-'i for (j=1,2,....k=1), 6 = p=lo.

Setting up the moment estimating equations (MEE) along with the restrictions, %, = A, &1}
and 1o, = 6, @ [, the proposed estimators of the hyperparameters by the momest estimation
method at gauged sites are:

f 3\ *1 » »
y;&ﬂ'-"l ylh,u.«h.) (hb.u-at'}lh]) 0o

;\.,-é,e:,a.( ~o—s =

Aot = *x ((M) = (75, Var{¥y#+ “’)f.,));

u, - 1my

'y i
Ll = (6.-”-1)(’ n’ ) (15)
Equation (15) can be expressad as
Vi Vo o W
Aow | tn Y o Wy | (16)
L Wi Ve

where V), are the p dinsensional block matrix and

A, 0O .0
0 A O .0

00 ..M

3.2 Estimation Equations for 4;,4;,...4,

To estitsate the degrees of freedom, we suppose that ¥ ~ t,,(p, 6" A @ ¥, 4). Then the
differemtiation of the log-hikelihood functson with respect to § vields the followiag estimating
equation for &,

Mo np, i, A9, Y)=0,

where
nep 2y . o . g
M L, p, 0, A, 9, V) g,(“_";:;_') -z,,(“; ') -2’;.,(6_}_')
-1 -l Vel
= kgl + AT = @¥ (Y = @), (im
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and n(+) i the digamma fusction
From the joine destribation f(¥3% '~ ®)) the catimating oqustions of 4, 4, .. ., & are thes
respectively given by
Ao —gps1in—m gp V¥ Moy . + Yiiter Al pno- t,.n‘“') S
hide = mp+ 10,0000, 9. Y™ = 0,
(18)
whete f=1,2,. .. k=1

To estimate (5 pasamwtens in H by using the method of moment, we will use the Sollowing
Lemsna 1.

Lemesa 10 Let V be an gp % gp matrix, A, as ¢ x ¢ matrix and 2, an p % p matrix. Then the
function
VA < V=-Aa0}

{1V zrl%iv“
- 2 uod ) = <
M= e b3/

where Vi, = 5 = 1,2, g is the p dimensbonal block matrix.

Proof: Re-write the function f(V, A, 51) as follows,
IVAR=|V-AeB) = c;((v ~Aen)y(v-Aen)

will be minimized, when

- % te(Viy — Ay (19)
Minkmizing (19) with respect to A, (with § fxed) yiekds,
Ay - '—:—:%:—",{3 ij=12....9.
To minimize (19) with respect to (2, weo consider
2;:::% - A M) = %T,i.’,lr(ﬂ’l -zgjiuu(tbm +gu(“31- (20)
Differentisting (20) with respect w0 1} (with A fixed) and thea equating to 2ec0, yvields
- %&&%’q, (21)

The etisnstion steps for the parameters are as follow:

Step (I). Sence the estimation of €, does not depends on degross of [rondom, we estunate
O, (j = 1,2,...,k} by using Lemma 1 and equation (14}

Step (I1). Given the currest valucs of &, &, ..., &, estimate the parameters Ay, Ay, and O, by
using the method of moenent equations (15) and Leusoa 1.

Step (111), For a given values of A, (j = 1.2,... .k — 1), Ay sl §2, sl estemated values of

1



&, (i =1,2,..., k), we cstimate the degroes of freedom &y, 6;, ... & by the estimating equation
(18).
Step (TV) Repeat the steps (11) and (T1T) untid comvergence.

I the following section, we will discuss about the the peedictive distribution and the related
parameter estimations for ungauged sites,

4 Predictive Distributions for Ungauged Sites

This section provides the joint predictive distributicas of all uscteerved responses st us-
gauged sites. Consider the distribution of Y in (1) and the prior distnbution of £ i (2).
We may state the peodictive distributioa of enolserved responses at ungaugod sites as in the
following theorem.

Theorem 3. The predictive distribution of the unobdserved responses af unguuged sites conditional
on the obseroed data YO and the hyperparumeter set W 15 given by

(VN | P R) ~ s {5 407, (5% = wp 4+ 1)~
x (I + VOUNYS) g (AW @ ), 6% - up + 1}, (22)

where Y™ matrix contains both observed and hackeastod responses and H'™ is obtainable from
{12) in terms of (¥, 7, i =1,2,... .k~ 1]

4.1 Estimation of Parameters for Ungauged Sites

The hyperparameters A, 8, = 1,2,... . k- 1), 4; G =1,2....,k), and (L, have already
been estimated by using the method of moment ia Section 3. The remaining hyperparameters
related to ungauged sites, are estimable by using the SG method. Note that SG method is nom.
parametric and is designed o extend the spatial covariance from the gauged to the ungasged
sites. To procesd to the SG algorithm, we need the following joint distribution.

The joint distribution of (Y™, ¥¥) is

FY™Y¥ 130 = £(Y™ | VS 2000 | %)
= trnn (YR, (8% < up 4 )78 [, 4 YHHNYI] @ @1, 4% < wp 1)

A-3 e 1 S5 R
* ’]:[‘ taxsn () Wriedle,, Gt (I.. + YWoi—al gyl ) B8 —-gp+ l)
x 'axw(o.(at‘M+|‘-‘l.@'..6.-”L [) (23)

The f!," and ¥ are to be solvnd using the empirical varianoe matrix V' asd the mamests of
the juint distribetion,

Use the following parametric restrictions: ¥/ w AN a0 rM w0, withe g x u
and H™ o H,, where Hy can be obtained froms (12) for j « 1,2, &k = 1; we obtain the
population covariance matnix between usgasged and ganged sites as follows

Var (K, ¥%) = (,-r‘-,,, (’ﬂ;i z‘:;;f?-:jwo s ’J:,:;“Z ',;w) )




[ew.ew e T A 0 I
- en

A O™ Agy

= A®, (24)

where

" [ N0, + W. Meses r‘;‘,‘,%‘\i A ]

g - e

Auol)e; “U‘"

for (j=1,2....k 1) and Ay, = A,
Then SC method i used to cbaaln an estimate of ¥ as follows:
plieel  gingl
s..v.[wl | (25)
Equating mateix A in equatioas (24) and (25), we obdain the estimated hyperparmmetens for
ungauged sites

Ay = Vil =

% - .’\(,',f’w-l"lﬂ i

"ﬁ = wgl’-\’“-lf-’weh

AN - ‘l‘ng'--w-ﬁvf-d"rﬁl. (26)

Mu,-‘—_'_-l—‘ :,‘r_ﬁ:’l_—'.

4.2 Selection of &'
Froe the joint distribation of f(¥™ Y the estimation equations of & are then given
by
AE™N —up+ 1) | moup, YO o YWy s AN g @ ¥™) =0 (27)

Noto thar Vi = Yo oo the bog-determisast in A fusetion is equal to zero, implying that
the oquation (27) has oo solution (Le et al 1998), Sisce the degrees of frendom &%, have w
selected before interpolating the unolserved data. Given our lack of a spatial model on the
hasis of which we could lsterpolate the degrees of froedom over space, we select 8 as

5 = min(dy, ... &) oc -J-‘Lt—ﬂ
subject to condition that &% > up, 8,4, & bave bom estimated I= sectioa 3 Fur o
application (k = 2), we consider 6% = min(dy, 5), the scemingly ennvincing choice.

Another way of slecting £ can be described as follows: estimate § frum dillesest stes,
for example &§;,8;, . ... & from k observed sites andd then interpolates thow mtimates by whing
a smoothing fuscticn over all the spatial feld. To be fonsibde however msore gauged siles are
noaded.
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5 Application

I this section we illustrate our theoey using data from Philadelphis, where multivariate
pollutants (PM,, and PMy, ) were measared at 8 sites, but oot all sites measured all pollutants
at the same thme.

Lo et al (1999) present & Bayesian snterpolation method to deal with univaziate staircase
data, while a single pollutant is of interest. The method developed in this paper deals with
a multivariate settisg and enables to borrow strength by exploiting correlation between polle-
tants.

5.1 Data Patterns in Staircase

The daily average concentration levels for PM;; and PM;; were measured (in pg/m”) at
elght (8} monitaning stations: Temple Unmiversity, Prestyterian, Oity Center, Cansden, City
Laboratory, Roxborough, NE Airport and Valley Forge in Philadelphia from May 92 to the
middle of September 1993, Howewer, not all sites messured pollstasts at the same time.
Tabde 1 provides the locations of these sites, their corresponding code numbers and operating
times.

Table 1. The pottern of PMyy and PM, data wm Phdadelphis
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Oeerve in Table | that stations at Temsple Univensity, Preslnterian, and Airpoet have
recorded concentratiom Jevels from May 1992 to the middle of September 1993. Amoug these
throe sites, Prosbyterian recocded concentration bevels evervday from the micdkdle of May 1992
to Sepiterbier 1960, Temple University recorded concentration levels from May 1992 to the
middle of March 1993 every other day and everyday from the middie of March to September
in 1993, NE Alirpeet recorded dally coacestration levels from May to August in 1992 and
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froem the middle of March to middle of September in 1903, and eveey other day in between
these tinwes. The other four sites (City Center, Camden, City Laboratory, and Valley Forge)
reported levels every ctber day from Jely to August in 1992 and dasly from July to the middle
of September in 1993, Among four sites, the caly exception 18 obsrved in Camden station
which recorded daily concentration bevel from ssiddle of June o Aagust in 1992 and from Jaly
to middle of September in 1903 and every other day for two weeks in September 1992, To avosd
the complexity with Ettle loss of lformation, concesteations meassred in June and September
in 1992 at Camden station wete amitted. Due to lack of measurements, we set the Roxborough
site aside, s data to be used Inter for assessdag (sterpolated values. We used the other seven
sites to build our interpolator. The geographical locations of monitoriag sites in Philadelphia
ks gives ia Figure 1.
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Figure 1. Geographical locnlions of monitoring xifes in Philadelphia Sites arv indicated by
%" gnd {82 census tracls plus the Rozhorough mte are indicated by ="

The unmensuzed polbatasts for the every other day have been fillod-in using the EM algorithm,
With these Slled-in valoes we have thiee “complete™ sitex to build the secoad block and four
other sitex having the same number of missing data valoes 1o baild the first block at the gauged
K105,

It is notad that our thoeosy works only for an equal number of obeservations in sach hlock while
the number of observations can be different between blocks. After detrending and sutceogression
of the Jogarithm of PM;y and PMy, using the tisnespace mded, the residuals become time
iodependent. We therefoce can msonve the data froem July aond Acgest n 1992 o May and
Jume in 1993 in botk blocks. By arranging the data in this way we arhieve a pattern that
towemnbles & staircase. The sites with shortest recoeds form the lowest step while those siten
with loagest records form the highest step. We refer to the resulting blocked data set s the
“residual staircase™ data. The total smmber of observations ia block 1 s »y = 137 aad in block

2 is ny = 503,
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The sacond block contains moce observations than the Gt one, which creates the data stair
case structure and theeefoee, we can implement our theory oa this staircase data set.

5.2 GIW Models and Backcasting

I this subsection, we apply our theory to the staircase residual data. We have assamed a
Guaussian-Generalized Inverted Wishart (CIW) model. To assess that assumption we checked
the stasresnse resaduals of both PMye and PMy; individually by wsing Q-Q normal plote The
QQ plots produced by using residuals from each monitorinug sites are shown i Figuse 2. These
plots make the Gaussian assamption quite tenable.
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Figure 2. Q Q plols for “stawrcase”™ residusly of PMyy and PM; 5 of all monitoning sitea
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‘The gaedictive distributions and related proosduses for estimating byperparameters were pre-
sented in Soction 2. For the gauged sites we have k = 2,6y ~ 4, 93 = I, p - 2, my = 366 and
n = 508, The estimated hyper-covariance matrix corresponding to the spatial cross-cocrelation
of the resdduals &1 the gauged sites are as follows:

s | 1428 6138 2419 2002
Ml 2ise 249 15668 0459 e

hAoTe l.m 2-759 1.767 2TRI2 21635 20.145
' '.‘! = ( )
1.767 2042 0450 6.321

0503 0260 -0.072 0,069
ﬁ:(“)‘;‘g‘“ ?g) mé.-(-o.ms 0015 0204 0228 |.
804 1. 0085 0275 0330 0.224

The estimated degrees of frendom ot ganged sites are 6y = 207 and &) « 239 7

These estimates can be lterpretad s fulluws. The diagonal elements of A; and A; are
the waniances of the mooitoring sites in the St and sevond blocks respectively after joimtly
sccounting for both PMys and PMe. The variances of the sitem, Camden, Laboeatary, City
Centor and the Valley Forge are smaller in scale than the sites, NE Airpoet, Presbytezian and
Temple Universaty, It is also obeerved that City Center is generally less correlated with other
sites. More of this will be discussed in a later section. The covariance matrix ) gives the
correlations beeween pollutants. All the estimated parameters, &, 8;, A,, A; and 11 will yield
the |, matrix for gauged sites.

The means of the prodictive distribution at gauged sites impate the systematxcally missing
values and this process is called the “hackensting”. After backcasting, we shifted the original
data froes May 1o June in 1990 to July to August in 1992 Figure 3 shows the backcasted resid-
uals for both PM; 3 and PM,g (light-dotted lines) along with the observed concentration levels
(dark-dotted lines) for both pollutants. We see that both pollutants have similar backeasted
data due 1o the spparont *flatness”™ of PM Gelds in Philadelphia
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Figure 3. Bockcasted data for PAMys end PMy from ell guuged sites.

The estimated correlations between sites by the Kronecker peoduct are given in Table 2. Under
the assunved Kronecker correlation strecture, we found that the correlation ranges between 0,401
to 0319, The highest cstimated coerclation is hetwesn Proshyterian and Temple University,
while the lowest is between City Center and NE Airport. We also observe that City Center has
Jesx correbatzon with others sites thas the sites themselves.



Tabde 2 C‘vwo-cornw:m between momit ster e Pha '
m_ EE.'.'E ¥ xrpon l‘%L 3 mﬁf §zy m ter | Valbay
Camdes | LOOD | 0880 | 066 0.481 0917 1 0488 | 0838
" Laborators | 0.580 L.000 0650 0.0 06 0508 | 0632

Alrport 0605 0655 1000 074 0.735 0401 | 0.563

E terian | 0.481 | 0.609 0744 1.000 0.8 0.596 | 0667
Temple Univ. | 0517 0,658 0745 051 1.000 0.541 0653 |
City Center | 0,44 0.503 0401 0.5% 0511 L.000 0.406

N 536 0632 0.563 0657 0633 0.906 1.000

The correlation coeficient between pollotants 1= 0.81, This indicates that a major coatribsstaon
Lo "My concentration levels comes from PM, .

5.3 GIW Models and Interpolation

In this sehwection we discuss the peadictive disteibution for uscbeerved dally average PM, o
concentration lovels foe given oleerved asd backcasted data im seven sites in Philadelphia based
v e theary presested in Soction 4. The ctinaled covanancs matrx of the GIW madel is

given by

(0059 0.036 0038 0033 0069 0043 0,043 |
0036 0.066 0.045 0.041 0.059 0057 0058
D038 0.045 0,123 0,036 0040 0069 0065
Vg = | 0033 0.041 0.036 0.064 0030 0051 0057
0050 0,059 0049 0050 0123 0095 0089
0.045 0.057 0069 0061 0095 0134 0107
| 0043 0,068 0,065 0.057 0.08 0107 0.119

For the carrent section, the analysis s conducted by using the SG methodology for estimating
the covariance structare over the regioe under study. The SG methad i wwed in conjunction
with latitude and longitude expand the covariance matrix V (between otmerved sites) to
encompaes both gauged asd sngasged sives ‘l‘boupumlof" wf’,. (the covariance
between gauged and ungauged sites), V5, (the covariance of ungauged sites) and Vi, (the
wwmwwnugﬂdm)-ﬂlhmlwmmommn
ungasged sites and Bence 10 obtain the mean of the predictive distribution. The SG method
develops a smooth mapping between “geographic space™ (G-space) and “dispersion space™ (D-
space), The mappiag transforms (stretches, compresses, and rotates) the latitwde and longitude
systean of Gespace into a coonlimates system, D-space, in such a way that the coerelation
between sites depends only oa the distance by which the sites are separated. This condition
called isotrogy is meoded to allow reliable interpolatica. The St vasiogram and Despace
coondinates obtained by meass of & spline smoothing techmique are peesented in Figure 4 and
5. Details of the SG methodology are available in Sasupson and Guetorp (1992) asd reccmly
kn Ll et al (2000) among other souroes,
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Figure 4. Variogram Fits and D-plane: Smoothing Parameter (A) = 0.
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Figure 5 Variogram Fits and D-plane: Smoothing Parameter (N) = 2.

Iu implementing the SG method, the transformation betweea the Gospace and D-space is spec-
ified 35 that correlation hetween any two Golocations cas be determised. We first transform
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the cocedinates of two locations in G-space to D-space and then compate the isotrogec corre-
Iation between the transformed locations in Duspace by the fitted variograss fusction. The left
Band pamel In Figures 4 and 5 show an expoaentinl variogram fitted to the 21 Dospaer sequared
distance betwoen the sites under investigation. For a better understanding of these ploes, the
movemest of sites from Gespace to D-space Is provided iu Figeref. Figure 4 shows the surface
most essentially be folded over om itself to nchieve the desired states of Isceropy. Figure 5 s
a smmoother version of Figare 4 (with smoothing parameter A « 2). Froan theso two figures,
we may conclude that the spatial distribution of the pasticulates i not sctropic. To attain an
isotropic state the site, NE Alrport, has to be shifted towards the Center of the city, Camden
has to be moved West while Valley Foege has 1o be moved East, Figure 6 shows another view
ol the movement botwoen G space and Dospace. Since the monitoring sites, Presbvterian and
Temple University aze highly correddated (0.85), in Dospace, one is almost seperiznposed on the
other.
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Figure 6. Movements of sites froon G-apace to D-space.
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Following the discession in Li et al {2000), the interpolated covariance matsix is obtained via

the SCG method. We aze thes able to get the interpolated sverage PM; s concentration levels
for 483 census tracts from 1992 to 1993, This vields a 5303 x 453 matrix of interpolants.

Figure 7. Interpolated PM;y: January & (Wednesday) to 9 (Ssturday) (Days 251-254)

iT t

O:‘“\ .
S

3 s

Figure 8. Interpolated PM, 5: September § (Fnday) to & (Monday)(Days §81-494).

With the choice of smoothing parameter A & (), we can apply the spatial prediction methodol
oy discussed earlier Figusre T displays the interpolated dally PM,; 5 Seld in typical wister days
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[January 6 (Wednosday) to 9 (Sazurday)| in Philadelphia Observe that the avernge concen.
Lestion level on weekdays is Bigher than the weekend. Figure 8 exhibits the intorpolated daily
PM; s liedd in typical summer days [September 3 (Friday) to 6 (Monday)|. Simslas conclusions
can be drawm for that scason. Howewer, the average daily conosotistivn level on sammer is
higher than winter. In particalar these figures show spatial vanation in the level of PMy s
field over space, time (day-to-day) and ovor season (sumanes and winter). Fimally, it may be
concluded that the interpolatod PM; s surface s not flat ca any day.

The standard deviation plot for the interpolated log PMy 4 of day 493 is shown in Figuew 9.

Figure 0. Contour Plot of The SD¥ of The Intespolation: Day {85

The comtour plot shows that an ungauged site close to an existing (gauged) séte has a small SD
and the site further swny from the gauged sites has bigger SD.

5.4 Assessment of Interpolation

Since the interpolatod spatial fiekds can serve a vasiety of importase purposes. high peadictive
acceracy is desirable. In this section we will assess about the accaracy of interpolatod values, Tt
is noted that the prodictive disteibytion of unobservad respouses at wnganged sites has n matrele
t distridation. The marginal distribution of a matzic ¢ is agsin a matsic t disribution (se0
Press 1082). When the nussber of rows or codumns is one, the matrie ¢ beooime a multivaniate
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Stident £ disteibmtion. From a maltivarste Stodent £ disteibution, one can derive the univariate
predictive distaibution foe sny pollutant at any gives site. Then using the ¢ distributios, ose
can constroct a 95% coafidence band for unobserved responses. We use the estimated degroes
of freedom at ungauged site as 207, which is the minimam of the estimated degroes of freedoms
at gauged sites (8, = 207 and &; = 239). Figure 10 depicts the observed value {with big *-")
# Roxbotough station snd the 95% conlidence band (dotted line) based on the interpolated
valees from otler seven sites. We found that the estimated 955 confidence band covered $5%
(5 ot of 32 data points are outside of the confidence band) while the estimated 9% confidence
hand covered 904% (2 out of 32 data points are outside of the conlidence band) of the observed
values at the Roxborough moaitoring site

B
!4

Figure 10. Confidence bund and the odserved PAMy s of Rocboresgh monidor sile.

6 Concluding Remarks

This paper bas developed a Bayesian approach for multivariate spatial and temporal ine
terpolation problens. This approach is an cxtension of the Bayesian methodology for spatial
interpolation devedoped by Le, Sun and Zidek (1999) to gain an interpolation theory for mults
ple pollutants. We assumme a Gaussian generalizad invertod Wishart (GIW) model. Specifically,
the responses are assumed to follow a Gaussian distribution and the corresponding covariance
is sssumed 10 folkw & generalized inverted Wishart peice distributioa. The resulting predic-
tive distnibution fallows a matrix T distribution with approguiste covariance parametecs and
degrees of fresdom. As an alternative to the EM algorithm, we have presented in the paper a
simpler method of mossent estiznation tool to estimate the unkmown Myperparameters for mul-
tiple respoase models. The MOM is a straight forward method and gives exact solutica. We
also developed a predictive distribution for the unobscrved responses at usgauged sites. The
resuits odtalosd In this paper will allow us 0 azalyse the data from different sites as well as
multiple pollutants, where the obesrvee] data mositoring statsons follow a stalrcase structure.
The approach works well in the interpolation of PMy s concentration levels in Philadelphina,
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Appendix. Estimation by EM Algorithm

In this section, we discuss how the edements of the Byperparameter set ¥ of Equation
{4) are to be estimated bt EM algorithes. Note that we need estimate caly those parameters
volved in the gauged sites. These estimates are obtained in two steps. [n the first, where data
are available for direct estimatioa, the hyperparameters are found using the type I maximum
ltkelibood approsch. The secoad step invalves the estimation of the hyperparametens associated
with the ungauged sites. This step is done using the spatial covariance interpolator developed
by Sampeon and Guttorp (1992) and discussed in Section 4, The EM appeoach hss previously
beens discussnd by varous researchers. However, Demgster, et al (1977), Chen (1979) and very
recently Le et al (1999) as well as Lin (1999) are notable among others,

The EM iterative algorithm requires at iteration p+ 1, in the "E-step” the compatation of

L(H | H?) = E (loglf(y, X% | %)] | D, W)

(28)
= E [log £(Y|E%) | D, W] + E [log £(X3 | ) | D, %¥],

given the previous parameter estimate X' from iteration p. Then at the “M.step” we aze

required to maximize the above fusetion over 3 to get H'”*Y. Here, the expectation is taken
over £ with respoct o the the posterior distribution ¥ | D, %V,
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Notice lhllb'[logf()'l!."") | D.‘R"’l does not depend om M. Thus the algosithm roguires
caly that we compate

£ | H?)) = E [log £(59 | ) | D, ] (29)
at the E-step and maximize £* over H at the M-step, where (5% | %) is given by
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E[Tih | D} = E[E3 | D.H] = &(Na),

E (g [Saal | D, M) = =gu log 2 - f‘,o(" SLL ') +log )l

(BN :
Q -
£ {log T | D.70) = =g, g2~ 3-n (232 + g

and Ay, &, H,, 7, are defined under Equation (6).
Suppose the current estimate of ¥ is

W = (00,0, [N, 8] § =12, k1), ()

The EM algorithm at step (p + 1) is then implemented in two steps.

(i) E-stepc Coenpute the posterior expectations involved im (13), given data and N7,
(ii) M-step: Maximize C*(H | H¥') over H 1o obtain the updated estimate 7' of 3 at step
(p+ 1) This Mstep Is carried out by the following updating processes.

(a) To update the estinsates of £, maximize the following logarithmic fupction with respect to
0,

.
Al 1 (2 |
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where G = 3% G,
G = (Gy) = (Ae @ L) {E(E5 1D, WY}
K; = L8, K, and
K = (Ky) = (A, @ L{ BT 1D W7 } + E{(r) = r)l (1) — 7j0)|D, W™},

Then Gollowisg Anderson (1984, Lemma 3.2.2), we obtain
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(b) To update the estimates of A,, J « 1,2, & we consider two cases.
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Case 1. To update Ay maximiee the following function:
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where £ = (1), &; = te(L,,) and
L= (I, eMEE, | D, H?),

Case ii: Toupdate \; = 1,2,.._ &~ |, maximize the following function:
&

-]
-
where
Ry=E((rj= )7 (r; =) | D,HY) and S, = E(F}* | D, RH™).
The MLE of A, is
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where M = (my,), my = tr(M) and M = (I, @ A)(R, + 5,)
(e) To upgrade the estimate of vy, f = 1,2,... &k - |, maximize the following function
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The MLE of 7,0 we obtained is
eV = Wl o (1 < WP,
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Iteroting these EM steps until ootmtguce produces estimates for the hyperparameters

snchuding (As, 92, [\, 7o), & 9)-1 k < 1). These estimated hyperparameters can be usnd
to form an estimate for A Wﬂththwhllymdthmm-'
throngh the Barlett transformation. This estimate &s relevant to the estimation of A™ and 73

the hyperparameters correspoading to the ungauged sites via the Sampson-Guttorp method as

described in Section 4 and 5.
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