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Abstract

This paper presents a multivariate spatial prediction methodology in a Bayesian framework.

The method is especially suited 'for use in environmetrics, where vector-valued responses are

observed at a small set of ambient monitoring stations ('gauged sites') at successive time points.

However the stations have varying start-up times so that the data has a 'staircase' pattern

('monotone' pattern in the terminology of Rubin and Shaffer 1990). The lowest step corresponds

to the newest station in the monitoring network.

We base our approach on a hierarchical Bayes prior involving a Gaussian generalized inverted

Wish art (GIW) model. For given hyperparameters, we derive the predictive distribution for

currently gauged sites at times prior to their start-up when no measurements were taken.

The resulting predictive distribution is a matrix T distribution with appropriate covariance

parameters and degrees of freedom. We estimate the hyperparameters using the method of

moment (MOM) as an easy-to-implement alternative to the more complex, Expectation and

Maximization(EM) algorithm. The MOM in particular gives exact parameter estimates and

involves less cumbersome calculations than the EM algorithm.

Finally we obtain the predictive distribution for unmeasured responses at 'ungauged' sites.

The results obtained in this paper allow us to pool the data from sites that measure different

pollutants and also to treat cases where the observed data monitoring station have a mono tonic

'staircase' structure.

We demonstrate the use of this methodology by mapping PM2.5 fields for Philadelphia during

the period May 1992 to September 1993. Large amounts of data missing by design make this

application particularly challenging. However give empirical evidence that the method performs

well.

Key words and Phrases: Bayes; Hierarchical; Inverted Wishart Distribution; Matrix T- Distri-

bution; Method of Moment; Posterior Distribution; Predictive Distribution; Spatial Interpola-

tion.

1 Introduction

A strong association between particulate pollution fields and a variety of negative human

health outcomes has been demonstrated through a series of epidemiological studies (c.f. Bates



et al 1990, Burnett et al 1994, Dockery et al 1992 and 1993, Pope et al 1995, Schwarz et

al 1993, Ostro et al 1991 and Roemer et al 1993). Interest has concentrated particularly on

two particles sizes, P M2.5 and P MID' The smaller of these two (and even finer particles) is

commonly thought to be a greater risk factor. However Smith et al (2000) recently published

evidence to the contrary and provide a source of references to on this issue.

Critics have argued that measurement error compromises the quality of these epidemiological

studies (c.f. Levy et al 2000). In particular, epidemiological studies have often relied on

measurements obtained at ambient monitoring sites even though these may be situated a long

way away from the subjects in the study. Thus they do not forecast well the true personal

exposure sustained by these subjects. This deficiency and the criticism that can ensure has led

to the recognition of the need to spatially predict i. e. interpolate random pollution fields with

a view to getting improved estimates of true exposure.

Such studies may include health outcomes over a long period of time, for example 6 years in

the case of Zidek et al (1997). Over that such long periods not all currently gauged stations will

necessarily have been in operation. In this case, investigators will need to 'impute' or 'backcast'

in the terminology of this paper the unmeasured values at these sites in addition to predicting

unmeasured values at the sites, such as the centroids of census tracts, where measurements were

never made. For chronic diseases with long latency such as cancer where cumulative exposure is

likely more relevant, the estimates for concentration levels are particularly important. Imputed

levels like these have been used in a number of studies (c.f. Duddek et al 1995, Zidek et al

1997).

In recent years, a Bayesian methodology for both temporal and spatial interpolation has

been developed starting with that of Le and Zidek ~1992) as an alternative to the well-known

method of Kriging (c.f Cressie 1991). The method has further been developed by Brown et

al (1994a) and Le et al (1997) to deal with the multivariate setting where possibly not all

monitored sites measure the same set of pollutants. The method produces the joint predictive

distribution -for several locations and different time points using all available data, thus allowing

for simultaneous temporal and spatial interpolation. Another advantage of this method is

that it does not assume the random field to be spatially isotropic. Furthermore, it allows for

uncertainty associated with the mean and the spatial covariance of the field to be incorporated

in the predictive distribution. The problem of finding Bayesian spatial prediction has been

considered by various researchers; Kitanidis (1986), Handcock et al (1993), Cui et al (1995),

De Oliveira et al (1997), Gaudard et al (1999) and recently Kibria (2000) to mention a few.

The specific problem of estimating the covariance fields for a non-stationary random field has

been considered by Sampson and Guttorp (1992) and further in Meiring et al (1997). This

problem has received a lot of considerable recent attention notably from Smith (1996), Samian

et al (2000j, as well as Schmitt and O'hagan (2000).

In the paper we extend the univariate theory of Le et al (1999) to the multivariate case and

thereby obtain an empirical hierarchical Bayesian method for temporal and spatial interpola-

tion using all available data. vVe base the method on the Gaussian and Generalized Inverted

Wishart (GIW) distributions. Specifically, we assume the responses follow a Gaussian distri-

bution and the corresponding covariance follows a Generalized Inverted Wishart (GIW) prior

distribution. We adopt a Kronecker product in the GIW model for the covariance matrix. This

parametrization reduces the number of parameters and more importantly allows us to estimate

the parameters in ungauged sites, i. e. census tracts in the application treated in this paper

where we do not have any observed data. Although the extension is somewhat formalistic, it

has advantages over Le et al (1999). First, this paper will help to simplify the burden of finding
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estimates of the potentially very large dimensional hyperparameters. Secondly, it will enable

estimation of the hyperparameters using the method of Sampson and Guttorp (1992; hereafter

SG method or algorithm) involving the predictive distributions for ungauged sites. We develop

a method of moments approach as an alternative to the much more computationally intensive

EM algorithm, which has provided in the Appendix. However the computer (computational)

program for the EM algorithm yet to be developed, which is under the future investigation. It

is noted that we assume there are no randomly missing data and return to this issue in the

application.

We structure this paper as follows. The main theoretical results about the predictive dis-

tribution for gauged sites, those at which measurement are taken are described in Section 2.

Parameter estimation using the method of moment is discussed in Section 3. The predictive

distribution for the unmeasured responses at ungauged sites and the related parameters esti-

mated by the SG method follows in Section 4. As an application, Philadelphia data are been

considered in section 5. Finally, a summary and concluding remarks appear in Section 6.

2 Main Results

2.1 Notation

For notational convenience, let:

n number of time points (eg. number of months);

u number of locations with no monitors - called ungauged sites;

9 number of locations with monitors- called gauged sites;

91 + 92 + ... + 9k;

p number of responses at both ungauged and gauged sites.

The 9 gauged sites are organized into k blocks of stations where the 9j (j = 1,2, ... , k) stations
in the jth block have the same number of time points mj at which no measurements are taken

by design. These blocks are numbered so that the observed measurements have a "rising a

staircase" structure, that is,

Denote

• the response variables partitioned for the gauged and ungauged sites by

where

an n x 9P matrix, denotes the unobserved and observed responses at gauged sites, and

- y[uj, an n x up matrix, denotes the unobserved responses at ungauged sites;

- y[g}l, an mj x gjP matrix, denotes the unobserved responses at the 9j gauged sites

for the mj time points;
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- y[gJ] , an (n - mj) x gjP matrix, denotes the observed responses at the 9j gauged

sites for the (n - mj) time points;

• observed measurements at the gauged sites by

D = {y)91,92, ...,9kJ} = {y[g~l y[g~l ... ylgZJ}.
2 , " ,

• unobserved responses by

1': b = {y[U] y[gi] ... y[g11}.
uno '" ,

• unobserved responses in gauged sites in blocks j to k by

Y[g} ,... ,g!] = {y[g}] y[g!]} ., ... , ,

• responses from gauged blocks j to k; including both observed and unobserved stacks by

(

y,[gj ,... ,g".J) [( y[gJ] ) ( y[gkl ) 1y[gj ,···,gkJ _ 1 _ . • • .

- r;[gj,,,.,gkl - y[gJl ' , y[g%] ,

• the responses from all gauged sites by

y[gl = y[gl, ...,gkl.

The covariance matrix r; of dimension (u + 9)P x (u + 9)P over gauged and ungauged sites are

partitioned conformably as

(

r;[tt] r;[Ug])

L.; = r;[guJ r;[g] ,

where ~[u] is an up x up matrix. The covariance matrix E[g] of dimension gp x gp on the gauged

sites is further partioned by blocks as

(

~[9j] . .. ~[9j'9k])

~[gJ" .,9k] = ... .. . ... . and ~[91,,,.,g,,] =

r;[9k,9;] ... L.;[g,,] (

L.;[gd

L.;[9"'9tl

E[91,9k]). .

L.;[9k]

The following. 1-1 transformation (Barlett, 1933) of the matrix ~[g] is used:

L.;kk = ~[9k],

fj = E[gj] - L.;[gj,(gj+l, ...,9k)](L.;[9j+l, ...,9k])-1L.;[(9j+l, ... ,9k),9j],

Ti = (r;[9j+l, ...,9,,])-1L.;[(9j+l, ...,9k),9j];

where

(

E[9j+l,9j] )

~[(gj+l, ...,gkl,gj] = : ,

L.;[g",gj]. ,

for j = 1, ... , k-l. It is important to note that L.;(g] can then be obtained from {EIe,t?(fie-I, Tie-I),·· ., (fI' T1)

by inverting this transformation. However the latter proves a much more convenient pararne-

terization of our model.
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2.2 The Model

The response matrix, Y, is assumed to follow the Gaussian-Generalized-Inverted- Wishart

(GIVV) model specified by:

{ (1)
~ rv GIW(w, 6),

where \fI is a function of a set of parameters involved in gauged and ungauged sites, i.e. \fI =

rn,A[g], A [u], 7Ju] , H[u]]; n is a P x P covariance matrix for responses at each site assumed constant

from site-to-site, 6 = [d"[u],O[g]], ® represents the Kronecker product between matrices and

GIW represents the Generalized Inverted Wish art distribution developed by Brown, Le, Zidek

(1994b). The Kronecker product is chosen because it reduces the number of parameters greatly

and more importantly allows us to estimate the parameters in ungauged sites i.e. census tracts

where we do not have observed data. Here Np(O,8) denotes Ithe P dimensional Gaussian

distribution with mean 0 and covariance matrix 8.

The conjugate prior distribution for ~ in (1), can equivalently be presented in terms of new

parameters (I:[9], 7[u], r[u]). Specifically, ~ f"V GIW(\fI, 0)

~[g] rv GIW(1], o[g]);

(2)

where 1] is a function of parameters for gauged sites. That is 1] = rn, Ak, Aj, Hj, TOj] (j =
1,2, ... k - 1), 5[9] = [51,52, ... , Ok], r[u] = ~[ulg] = ~[u] - ~[Ug](~[9])-1~[9U] is the residual

covariance of y[uL residuals after optimal linear prediction based on y[g], T[u] = (~[9])-1~[9u] is

the slope of the optimal linear predictor of y[u] based on y[g] and IW (<l>, .5) denotes the Inverted

Wishart distribution with scale matrix <l> and degrees offreedom 6. The hypercovariance matrix

A ® n is partitioned comformably with the partition of ~.

The distribution of ~[g] is further specified in terms of {~kk,(rk-l,7k-l), ... ,(rl,71)} as

follows:

r, rv IW(Aj 0 n, 6j),

for j = 1, ... ,k - 1, H, is a gjP x gjP matrix while the 6j represent the degrees of freedom for

the jth block, ~kk is a gkP x gkP, matrix, Tj is a (gH1 + ..... + gk)P x gjP matrix, and fj is a

gjP x gjP matrix.

The hyperparameters involved in the GIW model are written as

(3)

'1.J - {A[U] r[u] [u] H[U] A r "[ . H. A. l:.] . - 1 k - I}
/1.. - 1l ,l1 ,70, ,.Ll.k,l1k,H,70J, J,1\.J,UJ ,J - , ... , . (4)

The GIW distribution is a conjugate prior for Gaussian distributions. This prior is very flexible

and quite natural to deal with the staircase structure of the observed data. For example,

different degrees of freedom for each of the blocks can be expressed through the hyperparameter
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vector O. More details on the characteristics of the GlW distribution are given in Brown et al

(1994b), and Le et al (1999). In the following section we will present the main result of the

paper.

2.3 The Posterior Distributions

Since the posterior distribution is an essential element of the predictive distribution, we

develop and investigate the relevant posterior distributions in this section. Following Le et al

(1999) the posterior density can be obtained and expressed by the following theorem.

Theorem 1. The joint posterior density, f (L;[91ID, 1-£) is given by

with

where:

i\k

A
]

x

iI·
J

7j

J -]

k-1

f(L;[gl ID, 1-£) = ferJkk ID, 1-£) IT 1(7j ID, r;1£)f(rj ID, 1i)
j=l

L;kk I D,1£ rv IW(Ak' 5k + n - mk),

Tj ID, rj, 1-l rv N (Tj' it, Q9 rj) , (5)

r, I D, 1{ rv IW(Aj, Sj),

i\k Q9 n + (y[9~1)'y[9~1,
Aj Q9 n + (Y[9]1 - r;[9Hl, ...,9k170j)'

[I + (y[9Hl, ...,9kl)' H.y[9Hl, ...,9kl] -1 (y[g21 v[9j+l,· ..,9kl ).
n-mj 2 J 2 J - I2 TOj ,

[ ,]-1H
j
-1 + (Y2[9Hll...,9kl) Y2[9j+l,...,9kl ;

it. [H-:1T; . + (y[9Hl, ...,9kJ)' (y[9Hl"",9kl)] .
J J DJ 2 2 ,

8j + n - mj; (6)

for j = 1, ... , k -.:.1.
The posterior means of (l:kk' 7j, I'i. j = 1, ... , k - 1) can be obtained directly from the

Gaussian and Inverted Wishart distributions using the theorem above. Other types of posterior

expectations relevant to the hyperparameters estimations are given in Section 3.

2.4 The Predictive Distributions for Gauged sites

Dealing with the complex monotone (staircase) data structures confronted in this paper

forces us to pay a heavy notational price. Corresponding to the two parts of the theorem below,

we introduce notation to facilitate its presentation:
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= In + y[gj+l, ...,gk]Hj(y[9j+I, ...,9k])', for j = 1,2, ... , k - l.

Moreover, for j = 1, ... , k,

I/(j] - I/[j] + A[j] (A(j])-1 (y[gJ] _ I/(j]).
1""(112) - 1""(1) 12 22 1""(2) ,

w[J] = Aj ® n (y[g;J _ I/[JJ )'(A[JJ)-1(y[9;J _ IIUJ).
(112) 6

j
_ gjP + 1 1""(2) 22 1""(2) ,

(7)

(j] -
6(112) - 6j - gjP + n - mj + 1.

Then following Le et al (1999), the predictive distribution of the unobserved responses condi-

tioned on the observed data can be expressed in the following theorem.

Theorem 2. The predictive distribution of the unobserved responses Yunob conditional on the

observed data D and the hyperparameter set Ji for gauged sites is given by

k-1

(Yunob ID, Ji) rv IT (y[gJ] I y[gJ+l,···,g~l, D, Ji) x (y[gl] ID, Ji) ,
j=1

(8)

where the two components of the conditional distributions are specified as follows.

(i)

(9)

(ii)

(y[g}J I y[gl+l, ...,9kJ D '11) t ([j] ;r.,[j] fV\IT,[j] ,,[j]) (10)
J "Tt I'V mjxgjp 11(12)' '1:'(112) 'Cl ~(112)' u(112) .

We refer to the factors in (9) and (10) as backcasting since they give the joint predictive

distribution of the response variables at the gauged sites during their ungauged time period.

Corollary 1.- The means of the predictive distributions in Theorem 2 (and used in 7) are given

below:

l-"[gJJ= E (J.l~II~r1,...,k] ID, Ji) = E (J.l~]) ID, Ji) + E (A~~ ID, Ji) (A~~)-I(y[9;] - J.l[~]))

for j = 1, ... , k - 1. Here E (J1~J) I D,1-l) and E (A~~ I D,1-l) are recursively computed as

E (I/[j] I D '11) = 1/[9j+l, ...,9k]Ti .
""'(1) , rt, 1""1,) 0),

E (A[j] ID 1l) = H[gj+l, ..·,9k]H· ()9j+l, ...,9k])'
12, 1""1,J J 1""2,J
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where

fJ,[9Hl "",9k1 = [( ,u[9~+IJ ) ..• ( ;IJ[9~1 ) 1
y[9j+l] y[9~1'

For known hyperparameters, the unobserved response matrix follows a Matrix T distribution

with appropriate covariance matrices and degrees of freedom. However, for unknown hyperpa-

rameters, the predictive distribution can be approximated by its estimates obtained by using

the method of moments. To obtain an estimate for the covariance matrix with Kronecker

structure is a challenging problem, which we discuss in the next section.

3 Estimation of Hyperparameters

In this section, we discuss the estimation of the hyperparameters in H, which involves two

steps. In the first step, where data are available for direct estimation, the hyperparameters are

found by using the method of moments based on the available data. The second step involves

the estimation of the hyperparameters associated with the ungauged sites. This step is done

using the spatial covariance interpolator developed by Sampson and Guttorp (1992) and has

discussed in Sections 4 and 5.

3.1 Method of Moment Estimation Equations

Here we discuss the estimation of hyperparameters in 11.. of Equation (4). Specifically, we

derive the method of moment estimating equation (MEE) corresponding to the model developed

in the previous section that involves the Kronecker structure. To derive the moment estimating

equations, we consider the joint distribution of (Y2[gl,g2, ...,9kl) as,

f (yd91,92, ...,9kl) = rIJ;:i f (yjgjl I Y2[9Hl, ... ,9kl) !(Y2[9k1)

= nk-1 t (Y,[9Hl'''',9klT. 1 (1 + '(y,[gHl, ...,gkl) H. (Y,[9j+l"",9k1)') ,Q, W'
J=1 (n-mj)X9jp 2 OJ' 8j-9jP+1 n-mj 2 J 2 ICY J'

6j - gjP + 1) x tnxgkP (0, (tSk - gkP + 1)-1 In 0 Wk, 6k - gkP + 1) .
(11)

Unconditional on 'E[gl the second moments of the marginal distribution of yt[g] are

Wk
var [Ykt] = .\ . ;

k - gkP-

var [Y2[fj 1] = (T~j Var (y1%Hl ,... ,9k1) TOj + Wj (1 + tr( Hj x V ar (Y2[f
H1
,...,gk1)) )) .

6j - gjP - 1 '

cov [Y2~Hl,."'9kl, Yd%jl] = Var (ydrH1, ...,9kl) TOj,

where j = 1,2, ... , k - 1 and t = mj + 1, ... ,n.
Consider the following restrictions,

(
.T,-l .T.-l')'J! . - 'J!. TO'

If'-l = J -1 J ll, ,
J -Tio .\If . H· + "o .w· 7.0'J J J J J J

for j = 2, ... ,k - 1, (12)
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and Hk-1 = W;l; which follows from the Bartlett decomposition of the inverted Wishart

distribution, we obtain the Var (Y}ij,,9kJ) as

(

'V (V[9j+l, ... ,9kJ) lTr

Var (y;[gj ,... ,gkl) = TOj ar 12t TOj + aj 'l!j

2t V (V[9j+1, ... ,9kl)
ar 12t TOj

(13)

h . - 1 rrk .si -1 C ( . - 1 2 k ) _ 1were aJ - J- . -1 i=J"+l 0._ . -1' !or J - , , ... , - 1 , ak - .5 I.'
J 9]P , g,p k -9kP-

Setting up the moment estimating equations (MEE) along with the restrictions, Wj = Aj0D

and TOj = 8j 0 Jp, the proposed estimators of the hyperparameters by the moment estimation

method at gauged sites are:

(14)

(15)

Equation (15) can be expressed as

(16)

where Vij are the p -dimensional block matrix and

o 0)
.~. . 0 .

.. . Ak

3.2 Estimation Equations for J1, J2, ... Jk

To estimate the degrees of freedom, we suppose that Y rv tnxp(f-l, 6-1A 0 W, 6). Then the

differentiation of the log-likelihood function with respect to 6 yields the following estimating

equation for <5,

h(6 I n,p, /k, A, W, Y) = 0,

where

h(r5 I ti, p, u; A, W, Y) 'f 1] (6 + n + p - i) _t 1] (6 + n - i) _f 1] (r5 + p - i)
i=l 2 i=l 2 i=l 2

log IIn + A-1(y - f-l)w-1(y - f-l),I, (17)
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and T}(') is the digamma function.

From the joint distribution f(Y2[gj+l,···,gkJ), the estimating equations of 61, 62, ... , Ok are then

respectively given by

h (<5. - g.p + 1 1 n - m· g.p y;[9j+l,,9kl7i . I + Y [9i+l, .. ,9k]H·v,[Yi+l •...•Ykl ,T,. }T [9il) - °
J J J' J , 2 0J' n-mj 2 J 12 , ':J: J' 2 -

h(6k - gkP + 1 1 n, gkP, 0, In, 'lIk' Y[9kl) = 0,

(18)

where j = 1,2, ... ,k - 1.

To estimate the parameters in 1-£ by using the method of moment, we will use the following

Lemma 1.

Lemma 1: Let V be an gp x gp matrix, A, an 9 x 9 matrix and D, an p x p matrix. Then the

function

f(V, A, D) =11 V - A ® D 112

will be minimized, when
- 9 A

\ tr(OVij) dA LijAijVij
/\ .. - an' H - -"--~":"
2J - tr(D)2 - ",g. ~2 '

~t] t]

where Vij, i = j = 1,2, ... ,g is the p dimensional block matrix.

Proof: Re-write the function f(V, A, D) as follows,

f(V, A, D) =11 V - A 0 B 112 tr [(V - A 0 D)' (V - A 0 D)]
9

L tr(Vij - AijD)2.
ij

(19)

Minimizing (19) with respect to Aij (with 0 fixed) yields,

A tr(DVij) i,j=1,2, ... ,g.
Aij = tr(D)2 '

To minimize (19) with respect to D, we consider

2 9 9 9
~ A 2 ~ A2 2 ~ A ~ 2c: tr(Vij - AijD) = s: \jtr(D ) - 2 c: Aijtr(VijD) + c: tr(V:j).
ij ij ij ij

(20)

Differentiating (20) with respect to D (with ~ij fixed) and then equating to zero, yields

A 9 Ao = Lij Aij Vij
9 A2 .

t=ij \j
(21)

The estimation steps for the parameters are as follow:

Step (I). Since the estimation of 8j does not depends on degrees of freedom, we estimate

8j (j =1,2, ... , k) by using Lemma 1 and equation (14).

Step (II). Given the current values of 61, 62,"" 6k, estimate the parameters Aj, Ak, and D, by

using the method of moment equations (15) and Lemma. 1.

Step (Ill). For a given values of Aj (j = 1,2, ... ,k - 1), Ak and 0, a.nd estimated values of
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ej (j = 1,2, ... , k), we estimate the degrees of freedom 61,62, ... 6k by the estimating equation

(18) .

Step (IV). Repeat the steps (H) and (IH) until convergence.

In the following section, we will discuss about the the predictive distribution and the related

parameter estimations for ungauged sites.

4 Predictive Distributions for Ungauged Sites

This section provides the joint predictive distributions of all unobserved responses at un-

gauged sites. Consider the distribution of Y in (1) and the prior distribution of :s in (2).

We may state the predictive distribution of unobserved responses at ungauged sites as in the

following theorem.

Theorem 3. The predictive distribution of the unobserved responses at ungauged sites conditional

on the observed data y[g] and the hyperparameter set 1-l is given by

(y[u] I y[g], 1£) rv tnxub {y[g] x T6u) , (J[u] - up + 1)-1
X (In + y[g]HNy[gl') Q9 (A[u] Q9 0), J[u] - Up + I}, (22)

where Y[g].matrix contains both observed and backcasted responses and H[u] is obtainable from

(12) in terms of [Wj, Yj j = 1,2, ... ,k - 1.]

4.1 Estimation of Parameters for Ungaug.ed Sites

The hyperparameters Aj, 8j (j = 1,2, ... , k - 1), r5j (j = 1,2, ... , k), and [2, have already
been estimated by using the method of moment in Section 3. The remaining hyperparameters

related to ungauged sites, are estimable by using the SG method. Note that SG method is non-

parametric and is designed to extend the spatial covariance from the gauged to the ungauged

sites. To proceed to the SG algorithm, we need the following joint distribution.

The joint distribution of (y[U] , y[g]) is

The yJu] and w[u] are to be solved using the empirical variance matrix V and the moments of

the joint distribution.

Use the following parametric restrictions: W[u) = A[u] @ D; yJu] = 8bu] @ i;with 8bu] : 9 x u
and H[u] = Ho, where Ho can be obtained from (12) for j = 1,2, ... , k - 1; we obtain the

population covariance matrix between ungauged and gauged sites as follows

11



[

8[uj' A e[uj + 1 nk OJ-l A[U]
1 o,,-up-l J"",1oi-9iP-l

A(l)e[u]

e,[u] A(1) 1
0D

A(1)

A®D, (24)

where

[

8'A· 8· + 1 rr., Ilj-l A.
_ J (J+l) J OJ-gjp-1 <=J+2 c5i-giP-1 J

A(j) -

A(j+l)8j

for (j = 1,2, ... ,k - 1) and A(k) = Ak.

Then SG method is used to obtain an estimate of ~ as follows:

- - [V[UU] V[ug] 1
~ = V = V[gu] V[ggJ .

e~A(j+l) 1 '
A(j+l)

(25)

Equating matrix A in equations (24) and (25), we obtain the estimated hyperparameters for

ungauged sites:

A(l)

B[uJ

_[uj
TO

Nuj

v[gg]

A(i~V[gu] = vfgg]-lV[gul

Bbu1 ® Ip = Vf99J-
1
V[gu] ® t,

~ x [VUU - v[u91Vfgg]-lv[gU1],

au

(26)

1 k-.1c.!
where au = ll,,-up-l nj=l lli-gip-l'

4.2 Selection of 6(u)

From the joint distribution of f(y[u1, y[gl) the estimation equations of b[uJ are then given

by

h((b[u] - up + 1) I ti, up, y[g]T~ul, t,+ y[glH[uJy[g]'.A[u] ® D, y[u1) = O. (27)

Note that y[u] = y[g]TJu], so the log-determinant in h function is equal to zero, implying that

the equation (27) has no solution (Le et al 1998). Since the degrees of freedom b(u), have to

selected before interpolating the unobserved data. Given our lack of a spatial model on the

basis of which we could interpolate the degrees of freedom over space, we select b(u) as

-(u) . - -
b = mm(b1, ... 6k) or

- -
61 + ... + bk

k

subject to condition that o(u) ~ up, b1, b2, ... ,bk have been estimated in section 3. For our

applicatio-n (k = 2), we consider 6[ul = min(J1, b2), the seemingly convincing choice.

Another way of selecting b[u] can be described as follows: estimate 0 from Lli.lTerentsites,

for example 61,62, ... ,Ok from k observed sites and then interpolates these estimates by using

a smoothing function over all the spatial field. To be feasible however more gauged sites are

needed.
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5 Application

In this section we illustrate our theory using data from Philadelphia, where multivariate

pollutants (PM2.5 and PM10) were measured at 8 sites, but not all sites measured all pollutants

at the same time.

Le et al (1999) present a Bayesian interpolation method to deal with univariate staircase

data, while a single pollutant is of interest. The method developed in this paper deals with

a multivariate setting and enables to borrow strength by exploiting correlation between pollu-

tants.

5.1 Data Patterns in Staircase

The daily average concentration levels for PM2.5 and PMlO were measured (in fJg/m3) at

eight (8) monitoring stations: Temple University, Presbyterian, City Center, Camden, City

Laboratory, Roxborough, NE Airport and Valley Forge in Philadelphia from May 92 to the

middle of September 1993. However, not all sites measured pollutants at the same time.

Table 1 provides the locations of these sites, their corresponding code numbers and operating

times.

Table 1. The pattern of PM2.5 and PMlO data in Philadelphia

Site

Northeast

Airport

(421010024)

Presbyterian

(421010036)

Temple

University

(4210 10037)

Ccunden, NJ

(340070003)

City

Laboratory

(421010004)

Roxborough
(421010014)

CityCenler

(421010047)

Valley Forge

Observe in Table 1 that stations at Temple University, Presbyterian, and Airport have

recorded concentration levels from May 1992 to the' middle of September 1993. Among these

three sites, Presbyterian recorded concentration levels everyday from the middle of May 1992

to September 1993. Temple University recorded concentration levels from May 1992 to the

middle of March 1993 every other day and everyday from the middle of March to September

in 1993. NE Airport recorded daily concentration levels from May to August in 1992 and

13



from the middle of March to middle of September in 1993, and every other day in between

these times. The other four sites (City Center, Camden, City Laboratory, and Valley Forge)

reported levels every other day from July to August in 1992 and daily from July to the middle

of September in 1993. Among four sites, the only exception is observed in Camden station

which recorded daily concentration level from middle of June to August in 1992 and from July

to middle of September in 1993 and every other day for two weeks in September 1992. To avoid

the complexity with little loss of information, concentrations measured in June and September

in 1992 at Camden station were omitted. Due to lack of measurements, we set the Roxborough

site aside, its data to be used later for assessing interpolated values. vVe used the other seven

sites to build our interpolator. The geographical locations of monitoring sites in Philadelphia

is given in Figure 1.

~
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Figure 1. Geographical locations of monitoring sites in Philadelphia. Sites are indicated by

"." and 482 census tracts plus the Roxborough site are indicated by"·".

The unmeasured pollutants for the every other day have been filled-in using the EM algorithm.

With these filled-in values we have three "complete" sites to build the second block and four

other sites having the same number of missing data values to build the first block at the gauged

sites.

It is noted that our theory works only for an equal number of observations in each block while

the number of observations can be different between blocks. After detrending and autoregression

of the logarithm of PM2.5 and PM10 using the time-space model, the residuals become time

independent. We therefore can move the data from July and August in 1992 to May and

June in 1993 in both blocks. By arranging the data in this way we achieve a pattern that

resembles a staircase. The sites with shortest records form the lowest step while those sites

with longest records form the highest step. We refer to the resulting blocked data set as the

"residual staircase" data. The total number of observations in block 1 is nl = 137 and in block
2 is n2 = 503.
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The second block contains more observations than the first one, which creates the data stair

case structure and therefore, we can implement our theory on this staircase data set.

5.2 GIW Models and Backcasting

In this subsection, we apply our theory to the staircase residual data. We have assumed a

Gaussian-Generalized Inverted Wishart (GIW) model. To assess that assumption we checked

the staircase residuals of both PMlO and PMZ.5 individually by using Q-Q normal plots. The

Q-Q plots produced by using residuals from each monitoring sites are shown in Figure 2. These

plots make the Gaussian assumption quite tenable.
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Figure 2. Q- Q plots for "staircase 7J residuals of PMlO and PMZ.5 of all monitoring sites.
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The predictive distributions and related procedures for estimating hyperparameters were pre-

sented in Section 2. For the gauged sites we have k = 2, gl = 4, g2 = 3, P = 2, ml = 366 and
n = 503. The estimated hyper-covariance matrix corresponding to the spatial cross-correlation

of the residuals at the gauged sites are as follows:

(

5.579 1.428

A = 1.428 6.158
1 2.759 2.419

1.767 2.042

2.759

2.419

15.668

0.459

1.767 )
2.042

0.459 '

6.321

(

27.832

A2 = 21.635

20.145

21.635

30.401

24.323

20.145 )
24.323

26.978

n= (1.000 0.894)
0.894 1.209 ' (

0.503 0.269 -0.·072 0.069)

and 80 = -0.108 0.015 0.294 0.225 .

0.085 0.275 0.339 0.224

The estimated degrees of freedom at gauged sites are 51= 207 and 82 = 239.
These estimates can be interpreted as follows. The diagonal elements of Al and A2 are

the variances of the monitoring sites in the first and second blocks respectively after jointly

accounting for both PM2.5 and PMlO. The variances of the sites, Camden, Laboratory, City

Center and the Valley Forge are smaller in scale than the sites, NE Airport, Presbyterian and

Temple University. It is also observed that City Center is generally less correlated with other

sites. More of this will be discussed in a later section. The covariance matrix n gives the

correlations between pollutants. All the estimated parameters, 51, 52, AI, A2 and n will yield
the 1199 matrix for gauged sites.

The means of the predictive distribution at gauged sites impute the systematically missing

values and this process is called the "backcasting". After backcasting, we shifted the original

data from May to June in 1993 to July to August in 1992. Figure 3 shows the backcasted resid-

uals for both PM2.5 and PMlO (light-dotted lines) along with the observed concentration levels

(dark-dotted lines) for both pollutants. We see that both pollutants have similar backcasted

data due to the apparent "flatness" of PM fields in Philadelphia.
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Figure 3. Backcasted data for PM2.5 and PMlO from all gauged sites.

The estimated correlations between sites by the Kronecker product are given in Table 2. Under

the assumed Kronecker correlation structure, we found that the correlation ranges between 0.401

to 0.849. The highest estimated correlation is between Presbyterian and Temple University,

while the lowest is between City Center and NE Airport. We also observe that City Center has

less correlation with others sites than the sites themselves.
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Camden Laboratory Airport Presbyterian Temple City Center Valley

Camden 1.000 0.580 0.695 0.481 0.517 0.444 0.536

Laboratory 0.580 1.000 0.655 0.609 0.658 0.503 0.632

Airport 0.695 0.655 1.000 0.744 0.735 0.401 0.563

Presbyterian 0.481 0.609 0.744 1.000 0.849 0.536 0.657

Temple Univ. 0.517 0.658 0.735 0.849 1.000 0.541 0.653

City Center 0.444 0.503 0.401 0.536 0.541 1.000 0.406

Valley 0.536 0.632 0.563 0.657 0.653 0.4061 1.000

Table 2. Cross-correlation between monitoring sites in Philadelphia

The correlation coefficient between pollutants is 0.81. This indicates that a major contribution

to PMlO concentration levels comes from PM2.5·

5.3 GIW Models and Interpolation

In this subsection we discuss the predictive distribution for unobserved daily average PM2.5

concentration levels for given observed and backcasted data in seven sites in Philadelphia based

OIl the theory presented in Section 4. The estimated covar iance matrix of the GIW model is

given by

0.059 0.036 0.038 0.033 0.059 0.043 0.043

0.036 0.066 0.045 0.041 0.059 .0.057 0:058

0.038 0.045 0.123 0.036 0.049 0.069 0.065

~9 = I 0.033 0.041 0.036 0.064 0.050 0.061 0.057

0.059 0.059 0.049 0.050 0.123 0.095 0.089

0.043 0.057 0.069 0.061 0.095 0.134 0.107

0.043 0.058 0.065 0.057 0.089 0.107 0.119

For the current section, the analysis is conducted by using the SG methodology for estimating

the covariance structure over the region under study. The SG method is used 'in conjunction

with latitude and longitude expand the covariance matrix V99 (between observed sites) to

encompass both gauged and ungauged sites. The expansion of V99 to ~u (the covariance

between gauged ,and ungauged sites), Vuu (the covariance of ungauged sites) and VU9 (the
covariance between ungauged and gauged sites) will be used to estimate the parameters at

ungauged sites and hence to obtain the mean of the predictive distribution. The SO method

develops a smooth mapping between "geographic space" (O-space) and "dispersion space" (D-

space). The mapping transforms (stretches, compresses, and rotates) the latitude and longitude

system of G-space into a coordinates system, D-space, in such a way that the correlation

between sites depends only on the distance by which the sites are separated. This condition

called isotropy is needed to allow reliable interpolation. The fitted variogram and D-space

coordinates obtained by means of a spline smoothing technique are presented in Figure 4 and

5. Details of the SG methodology are available in Sampson and Guttorp (1992) and recently

in Li et al (2000) among other sources.
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Figure 4. Variogram Fits and D-plane: Smoothing Parameter (.\) = o.
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Figure 5. Variogram Fits and D-plane: Smoothing Parameter (.\) = 2.

In implementing the SO method, the transformation between the G-space and D-space is spec-

ified so that correlation between any two G-locations can be determined. We first transform
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the coordinates of two locations in G-space to D-space and then compute the isotropic corre-

lation between the transformed locations in D-space by the fitted variogram function. The left

hand panel in Figures 4 and 5 show an exponential variogram fitted to the 21 D-space squared

distance between the sites under investigation. For a better understanding of these plots, the

movement of sites from G-space to D-space is provided in Figure-6. Figure 4 shows the surface

must essentially be folded over on itself to achieve the desired states of isotropy. Figure 5 is

a smoother version of Figure 4 (with smoothing parameter). = 2). From these two figures,

we may conclude that the spatial distribution of the particulates is not isotropic. To attain an

isotropic state the site, NE Airport, has to be shifted towards the Cent er of the city, Camden

has to be moved West while Valley Forge has to be moved East. Figure 6 shows another view

of the movement between G-space and D-space. Since the monitoring sites, Presbyterian and

Temple University are highly correlated (0.85), in D-space, one is almost superimposed on the

other.
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Following the discussion in Li et al (2000), the interpolated covariance matrix is obtained via

the SG method. We are then able to get the interpolated average PM2.5 concentration levels

for 483 census tracts from 1992 to 1993. This yields a 503 x 483 matrix of interpolants.

N~

i· · ·

Figure 7. Interpolated PM2.5: January 6 (Wednesday) to 9 (Saturday) (Days 251-254).

Figure 8. Interpolated PM2•S: September 3 (Friday) to 6 (Monday)(Days 491-494).

With the choice of smoothing parameter ,,\= 0, we can apply the spatial prediction methodol-

ogy discussed earlier. Figure 7 displays the interpolated daily PM2.5 field in typical winter days
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[January 6 (Wednesday) to 9 (Saturday)] in Philadelphia. Observe that the average concen-

tration level on weekdays is higher than the weekend. Figure 8 exhibits the interpolated daily

PM2.5 field in typical summer days [September 3 (Friday) to 6 (Monday)]. Similar conclusions

can be drawn for that season. However, the average daily concentration level on summer is

higher than winter. In particular these figures show spatial variation in the level of PM2.5

field over space, time (day-to-day) and over season (summer and winter). Finally, it may be

concluded that the interpolated PM2.5 surface is not flat on any day.

The standard deviation plot for the interpolated log PM2.5 of day 493 is shown in Figure 9.
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Figure 9. Contour Plot of The SDs of The Interpolation: Day 493.

The contour plot shows that an ungauged site close to an existing (gauged) site has a small SD

and the site further away from the gauged sites has bigger SD.

5.4 Assessment of Interpolation

Since the interpolated spatial fields can serve a variety of important purposes, high predictive

accuracy is desirable. In this section we will assess about the accuracy of interpolated values. It

is noted that the predictive distribution of unobserved responses at ungauged sites has a matric

t distribution. The marginal distribution of a matric t is again a matric t distribution (see

Press 1982). When the number of rows or columns is one, the matric t become a multivariate
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Student t distribution. From a multivariate Student t distribution, one can derive the univariate

predictive distribution for any pollutant at any given site. Then using the t distribution, one

can construct a 95% confidence band for unobserved responses. We use the estimated degrees

of freedom at ungauged site as 207, which is the minimum of the estimated degrees of freedoms

at gauged sites (61 = 207 and 62 = 239). Figure 10 depicts the observed value (with big ".")
at Roxborough station and the 95% confidence band (dotted line) based on the interpolated

values from other seven sites. We found that the estimated 95% confidence band covered 85%

(5 out of 32 data points are outside of the confidence band) while the estimated 99% confidence

band covered 94% (2 out of 32 data points are outside of the confidence band) of the observed

values at the Roxborough monitoring site

o 100 200 300 400 500

Figure 10. Confidence band and the observed PM2.5 at Roxborough monitor site.

6 Concluding Remarks

This paper has developed a Bayesian approach for multivariate spatial and temporal in-

terpolation problem. This approach is an extension of t-he Bayesian methodology for spatial

interpolation developed by Le, Sun and Zidek (1999) to gain an interpolation theory for multi-

ple pollutants. We assume a Gaussian generalized inverted Wishart (GIW) model. Specifically,

the responses are assumed to follow a Gaussian distribution and the corresponding covariance

is assumed to follow a generalized inverted Wishart prior distribution. The resulting predic-

tive distribution follows a matrix T distribution with appropriate covariance parameters and

degrees of freedom. As an alternative to the EM algorithm, we have presented in the paper a

simpler method of moment estimation tool to estimate the unknown hyperparameters for mul-

tiple response models. The MOM is a straight forward method and gives exact solution. We

also developed a predictive distribution for the unobserved responses at ungauged sites. The

results obtained in this paper will allow us to analyse the data from different sites as well as

multiple pollutants, where the observed data monitoring stations follow a staircase structure.

The approach works well in the interpolation of PM2.5 concentration levels in Philadelphia.
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Notice that E [log !(Y I E[g]) I D, H(p)] does not depend on H. Thus the algorithm requires

only that we compute

£*(H 11l(p») = E [log !(E[g] Ill) I D, H(p)]

at the E-step and maximize £* over II at the M-step, where f(E[YJ IH) is given by

(29)

k-l

!(E[yJIH) ex: IAk 0 nl~IEkkl-6k+~k+l e-~tr{(Ak0n)E;;} IT {C(Oj,gj,P)IAj 0 S11¥
j=l

(9j+l+···+9k)p _ltr{(A0l1)(T'-To)f-:-1(Tj-Tjo)'} '!J.. dj+UjP+l

X Ifj I 2 e 2 ] ]]] IAj 0 S112 Ifjl- 2

X e-~tr{(AP8ln)r;1}}.

Then the log !(E[gll1l) is obtained as

log! (E[g] IH)

Hence,

where
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Case i: To update Ak maximize the following function:

J;P log IA;;ll- ~tr{(Ak ® O)E (E;;ll D, 1{) }
JkP 1-
T10g IA;;ll- 2tr{(AkL}

This gives

where L = (lij), lij = tr(Lij) and

L = (I9k ® O)E(E;;;ll D,1{(p»).

Case ii: To update Aj j = 1,2, ... , k - 1, maximize the following function:

k-l ( 2 + 6) 1k-l- j; gjP 2 P j log IA.tl- 2 ~ tr{ (Aj ® O)[Rj + Sj]}

where

Rj = E ((7j - 7jo)rjl(7j - 7jo)' I D,1{(p») and Sj = E(rt ID, 1{(p»).

The MLE of Aj is

A)PH) = (gjp2 + p8j)M-1

where !VI = (mij), mij = tr(M) and M = (Igj ® O)(Rj + Sj).

(c) To upgrade the estimate of 7jO, j = 1,2, ... , k - 1, maximize the following function

1k-1

- 2L tr {(Aj ® O)E ((7j - 7jo)rt(7j - 7jO)' ID, 1{(P»)} .
j-l

The MLE of rjO we obtained is

7- (pH) = W(p)r(p) + (1- w(p»)i-
)0 ))0 ) J'

where W?) = [(AJP) ® n(p») + (1(~rl' ...'9kl)'(1(~:+1' ...'9kl)] -1(AJP) ® O(p») and

:r. - ((y[9i+1, ... ,9kJ)'(y[9i+1, ... ,9kJ))-I((y[9j+l, ...,9kJ),y[92J
J - (j) (1) (1) J .

(d) To update the estimate of 8j (j = 1,2, ... , k), we maximize

k 0 k-l gjP (0· + 1) k-lOj; j~jP log 2 - j;~log r j - ; + j; ji
j
log IAj ® 01

s, { gk (Jk - i + 1) - -}
+ 2 gklog2+~r 2 -logIAk®OI

k-10· { gj (Jk-i+1) - -}
~~ gj log 2 - ~ r 2 - log IAj ® DI .

Iterating these EM steps until convergence produces estimates for the hyperparameters

including (Ak' D, [Aj, 70j, OJ],j = 1, ... , k - 1). These estimated hyperparameters can be used

to form an estimate for A[gl, associated with the spatial hypercovariance of the gauged sites,

through the Barlett transformation. This estimate is relevant to the estimation of A[ul and 7Ju1,

the hyperparameters corresponding to the ungauged sites via the Sampson-Guttorp method as

described in Section 4 and 5.
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